• Title/Summary/Keyword: Polarization splitter

Search Result 47, Processing Time 0.024 seconds

Polarization Phase-shifting Technique for the Determination of a Transparent Thin Film's Thickness Using a Modified Sagnac Interferometer

  • Kaewon, Rapeepan;Pawong, Chutchai;Chitaree, Ratchapak;Bhatranand, Apichai
    • Current Optics and Photonics
    • /
    • v.2 no.5
    • /
    • pp.474-481
    • /
    • 2018
  • We propose a polarization phase-shifting technique to investigate the thickness of $Ta_2O_5$ thin films deposited on BK7 substrates, using a modified Sagnac interferometer. Incident light is split by a polarizing beam splitter into two orthogonal linearly polarized beams traveling in opposite directions, and a quarter-wave plate is inserted into the common path to create an unbalanced phase condition. The linearly polarized light beams are transformed into two circularly polarized beams by transmission through a quarter-wave plate placed at the output of the interferometer. The proposed setup, therefore, yields rotating polarized light that can be used to extract a relative phase via the self-reference system. A thin-film sample inserted into the cyclic path modifies the output signal, in terms of the phase retardation. This technique utilizes three phase-shifted intensities to evaluate the phase retardation via simple signal processing, without manual adjustment of the output polarizer, which subsequently allows the thin film's thickness to be determined. Experimental results show that the thicknesses obtained from the proposed setup are in good agreement with those acquired by a field-emission scanning electron microscope and a spectroscopic ellipsometer. Thus, the proposed interferometric arrangement can be utilized reliably for non-contact thickness measurements of transparent thin films and characterization of optical devices.

Application of Micromachining in the PLC Optical Splitter Packaging

  • Choi, Byoung-Chan;Lee, Man-Seop;Choi, Ji-Hoon;Park, Chan-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.166-173
    • /
    • 2003
  • This paper presents micromachining results on planar-lightwave-circuit (PLC) chips with Si substrate and the quartz substrate by using Ti:Sapphire femtosecond-pulsed laser. The ablation process with femtosecond laser pulses generates nothing of contamination, molten zone, microcracks, shock wave, delamination and recast layer. We also showed that the micromachine for PLC using femtosecond pulsed lasers is superior to that using nanosecond pulsed lasers. The insertion loss and the optical return loss of the 1 ${\times}$ 8 optical power splitters packaged with micromachined input- and output-port U-grooves were less than 11.0 ㏈ and more than 55 ㏈, respectively. The wavelength dependent loss (WDL) was distributed within $\pm$0.6 ㏈ and the polarization dependent loss (PDL) was less than 0.2 ㏈.

Development of fabrication process of Planar Light-wave Circuit (PLC) : Optimization of the fabrication process of planar light-wave circuit by Hybrid Sol-Gel methods

  • Jang, Won-Gun;Kim, Chung-Ryeol;Kim, Jae-Pil;Park, Young-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.484-485
    • /
    • 2003
  • We report on the optimization of the fabrication process of hybrid sol-gel thin film deposition to produce low cost $1 {\times} 16$ splitters for optical communications. We learn that sol-gel film thickness is dependent upon the spinning speeds and viscosity of the sol-gel solutions and refractive index upon the dopant concentrations of Al and Zr in the sol solutions. We could find the optimized physical conditions to achieve the desired thickness of core and cladding layers. We will further carry out the fabrication and measurements of insertion loss, polarization dependent loss (PDL), etc. for the performance of fabricated splitter devices.

  • PDF

Study on Polarization Characteristics of Optical Device and Improvement of Measurement Precision of Normal Incidence Ellipsometer for Measuring Optical Anisotropy of a Micro Spot (미소면적 광학이방성 정밀 측정을 위한 수직반사형 타원계의 광소자 편광특성 및 측정정밀도 향상 연구)

  • Lyum, Kyoung Hun;Park, Sang Uk;Seo, Young Jin;Lee, Min Ho;Kim, Woong Ki;Kim, Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.6
    • /
    • pp.274-280
    • /
    • 2012
  • A normal incidence ellipsometer is fabricated to measure the optical anisotropy of a small spot whose diameter is less than $8.0{\mu}m$, by adding a beam splitter and a prism to the conventional rotating analyzer type ellipsometer. The polarizing actions of the added optical components are calibrated to improve the accuracy of the anisotropy measurement. The standard deviation of the optical anisotropy factor decreased to 0.00083, and the variation of the optical anisotropy factor of rutile versus sample azimuth angle variation also decreased to 0.015, after adoption of a non-polarizing beam splitter and a quarter wavelength phase retarder, followed by removal of the optical fiber and a careful choice of measurement wavelength.

Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2009
  • We propose a digital holographic interference analysis method based on a 2-frame phase-shifting technique for measuring an optical mirror surface. The technique using 2-frame phase-shifting digital interferometry is more efficient than multi-frame phase-shifting techniques because the 2-frame method has the advantage of a reduced number of interferograms, and then takes less time to acquire the wanted topography information from interferograms. In this measurement system, 2-frame phase-shifting digital interferograms are acquired by moving the reference flat mirror surface, which is attached to a piezoelectric transducer, with phase step of 0 or $\pi$/2 in the reference beam path. The measurements are recorded on a CCD detector. The optical interferometry is designed on the basis of polarization characteristics of a polarizing beam splitter. Therefore the noise from outside turbulence can be decreased. The proposed 2-frame algorithm uses the relative phase difference of the neighbor pixels. The experiment has been carried out on an optical mirror which flatness is less than $\lambda$/4. The measurement of the optical mirror surface topography using 2-frame phase-shifting interferometry shows that the peak-to-peak value is calculated to be about $0.1779{\mu}m$, the root-mean-square value is about $0.034{\mu}m$. Thus, the proposed method is expected to be used in nondestructive testing of optical components.

Fabrication of Planar Type Optical Waveguide for the Application of Biosensor and Detection Characteristics of Staphylococcus Aureus (바이오센서용 평판형 광도파로 센서 제작 및 황색포도상구균 검출 특성)

  • Kim, Jun-Hyong;Yang, Hoe-Young;Yu, Chong-Hee;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.223-223
    • /
    • 2009
  • In this paper, designed and simulated Power Splitter (PS) integrated Mach-Zehnder interferometer (MZI) based planar type optical waveguide devices (which is called here a PS-MZI). The PS-MZI optical waveguide sensor was preceded by a Y-junction, which splits the input power between the sensor, and a reference branch, to minimize the effect of optical power variations. The PS-MZI optical waveguide sensor induced changing phases of the incident beam, which had fallen upon the waveguide through computer simulation, according to the small changes in the index of refraction, thus beam intensity was changed. The waveguide were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The fabrication of PS-MZI optical waveguide sensor was performed by a conventional planar lightwave circuit (PLC) fabrication process. The PS-MZI optical waveguide that was fabricated to be applied as a biosensor revealed a low insertion loss and a low polarization-dependent loss. After having etched the over-clad at the sensor part in the MZI optical waveguide that was fabricated, Ti deposition was made on the adhesion layer, and then Au thin-film deposition was carried out thereon. In addition, its optical properties were measured by having changed the index of refraction oil at the sensing part of the MZI. To apply the planar type PS-MZI optical waveguide as a biosensor, a detection test for Staphylococcus aureus was conducted according to changes in concentration, having adopted Ti-alkoxide as ligand. The detection result of the S. aureus by the PS-MZI optical waveguide sensor was possible to the level of $10^1$ CFU/ml.

  • PDF

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.