• 제목/요약/키워드: Polarization resistance method

검색결과 176건 처리시간 0.027초

과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가 (Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution)

  • 김민정;김형찬;윤석영;정우창
    • 한국표면공학회지
    • /
    • 제44권2호
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구 (Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes)

  • 오기석;유현석;이기백;최진섭
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.521-529
    • /
    • 2016
  • In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.

옥외 청동문화재 보존을 위한 BTA 방청 피막의 특성에 미치는 코팅 조건의 영향 (Influence of Coating Process on Properties of BTA (Benzotriazole) Coating Film for Outdoor Bronze Artifacts Conservation)

  • 심규태;유영란;권용혁;김영식
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.652-659
    • /
    • 2009
  • Many ancient and historical artifacts were made by copper and its alloys. In the case of outdoor exposure artifacts, the surface could be suffered from corrosion and tarnish by the reaction with its environment. In order to preserve the artifacts, surface treatment would be needed and BTA coating has been usually applied to tin-bronze. This paper dealt with the evaluation of the properties of BTA coated film using a linear polarization method and AC impedance measurement. On the base of corrosion rate and film resistance for the specimen formed by coating process, optimum coating conditions are as follows; 3 cycles brushing or 3 cycles spraying coatings for natural dried process and 1 cycle brushing coating or 5 cycles spraying coating for hot-air dried process.

인가전류밀도에 따른 플라즈마 전해산화코팅된 AZ91 마그네슘 합금의 내식성 변화 (Influence of Current Density on Corrosion Properties of AZ91 Mg Alloy Coated by Plasma Electrolytic Oxidation Method)

  • 이병욱;황인준;이재식;고영건;신동혁
    • 대한금속재료학회지
    • /
    • 제49권8호
    • /
    • pp.601-607
    • /
    • 2011
  • The study investigated the influence of current density on the corrosion-protection properties of an AZ91 Mg alloy subjected to plasma electrolytic oxidation coating. The present coatings were carried out under an AC condition at three different current densities, i.e., 100, 150, and $200mA/cm^2$. From microstructural observations, the micro cracks connecting each micro pore were pronounced on the oxide surface of the samples coated at current densities higher than $150mA/cm^2$ since increasing the current density in this study led to an increment in the relative volume fraction of the MgO compound. Based on potentio dynamic polarization and immersion tests, the sample coated at a current density of $100mA/cm^2$ showed superior corrosion resistance.

마이크로 원통형 SOFC 특성평가: 집전방식에 따른 단위전지의 전기화학적 특성 (Evaluation of Micro-Tubular SOFC: Cell Performance with respect to Current Collecting Method)

  • 김환;이종원;이승복;임탁형;박석주;송락현;신동열
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.43-48
    • /
    • 2012
  • This paper presents the characterization of micro-tubular SOFCs using three different anode current collecting methods of inlet current collection (IC), both current collection (BC) and total current collection (TC). The maximum power densities of SOFCs at $750^{\circ}C$ using IC, BC and TC were 56 mW/$cm^2$ (0.43 V, 0.13 A/$cm^2$), 236 mW/$cm^2$ (0.43 V, 0.55 A/$cm^2$) and 261 mW/$cm^2$ (0.43 V, 0.61 A/$cm^2$) respectively. It was confirmed by impedance spectroscopy that both the polarization resistance and the ohmic resistance were dramatically increased at SOFC with IC.

전차선로 가선재료의 부식특성 (Corrosion Characteristics of Catenary Materials in Electric Railway System)

  • 김용기;윤상인;장세기;이재봉
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.535-542
    • /
    • 2000
  • 전차선로 가선재료에는 순수구리로 이루어진 전차선, 카드뮴이 포함된 조가선, steel과 Al의 이종금속으로 이루어진 ACSR이 있고 이들 재료는 산성비와 같은 부식환경에 노출되어 있다. 따라서 다양한 부식환경에서의 이들 재료의 부식특성 및 부식속도를 규명하는 것은 매우 중요한 일이다 이에 본 실험에서는 pH, 용존산소 및 염소이온의 영향을 동전위분극시험, 선형분극시험, 교류임피던스시험 및 갈바닉시험 등의 전기화학적 분석기법을 통해 가선재료의 부식거동 및 부식속도를 조사하였다. 실험 결과 카드뮴이 함유된 재료의 부식저항성이 순수구리로 이루어진 재료에서의 부식저항성보다 낮은 것을 확인하였고, 염소이온이 내식성을 감소시킨다는 것을 관찰하였으며, 갈바닉시험 결과 산성용액에서 염소이온을 첨가하였을 경우 steel의 높은 갈바닉부식 전류밀도를 ZRA 법을 통해 확인하였다.

  • PDF

전사지를 이용한 다전지식 평관형 고체산화물 연료전지 제작 및 셀 특성 (Fabrication and Cell Properties of Flattened Tube Segmented-in-Series Solid Oxide Fuel Cell-Stack Using Decalcomania Paper)

  • 안용태;지미정;박선민;신상호;황해진;최병현
    • 한국재료학회지
    • /
    • 제23권3호
    • /
    • pp.206-210
    • /
    • 2013
  • In the segmented-in-series solid-oxide fuel cells (SIS-SOFCs), fabrication techniques which use decalcomania paper have many advantages, i.e., an increased active area of the electrode; better interfacial adhesion property between the anode, electrolyte and cathode; and improved layer thickness uniformity. In this work, a cell-stack was fabricated on porous ceramic flattened tube supports using decalcomania paper, which consists of an anode, electrolyte, and a cathode. The anode layer was $40{\mu}m$ thick, and was porous. The electrolyte layers exhibited a uniform thickness of about $20{\mu}m$ with a dense structure. Interfacial adhesion was improved due to the dense structure. The cathode layers was $30{\mu}m$ thick with porous structure, good adhesion to the electrolyte. The ohmic resistance levels at 800, 750 and $700^{\circ}C$ were measured, showing values of 1.49, 1.58 and $1.65{\Omega}{\cdot}cm^2$, respectively. The polarization resistances at 800, 750 and $700^{\circ}C$ were measured to be 1.63, 2.61 and $4.17cm^2$, respectively. These lower resistance values originated from the excellent interfacial adhesion between the anode, electrolyte and cathode. In a two-cell-stack SOFC, open-circuit voltages(OCVs) of 1.915, 1.942 and 1.957 V and maximum power densities(MPD) of 289.9, 276.1 and $220.4mW/cm^2$ were measured at 800, 750 and $700^{\circ}C$, respectively. The proposed fabrication technique using decalcomania paper was shown to be feasible for the easy fabrication of segmented-in-series flattened tube SOFCs.

나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향 (Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films)

  • 김경태;이정자;황운석
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.

Synthesis and Characterization of Hydrotalcite/Graphene Oxide Containing Benzoate for Corrosion Protection of Carbon Steel

  • Nguyen, Thuy Duong;Tran, Boi An;Vu, Ke Oanh;Nguyen, Anh Son;Trinh, Anh Truc;Pham, Gia Vu;To, Thi Xuan Hang;Phan, Thanh Thao
    • Corrosion Science and Technology
    • /
    • 제19권2호
    • /
    • pp.82-88
    • /
    • 2020
  • This work examined the corrosion protection performance of benzoate loaded hydrotalcite/graphene oxide (HT/GO-BZ) for carbon steel. HT/GO-BZ was fabricated by the co-precipitation method and characterized by infrared spectroscopy, X-ray diffraction, and scanning electronic microscopy. The corrosion inhibition action of HT/GO-BZ on carbon steel in 0.1 M NaCl solution was evaluated by electrochemical measurements. The benzoate content in HT/GO-BZ was determined by UV-Vis spectroscopy. Subsequently, the effect of HT/GO-BZ on the corrosion resistance of the water-based epoxy coating was investigated by the salt spray test. The obtained results demonstrated the intercalation of benzoate and GO in the hydrotalcite structure. The benzoate content in HT/GO-BZ was about 16%. The polarization curves of the carbon steel electrode revealed anodic corrosion inhibition activity of HT/GO-BZ and the inhibition efficiency was about 95.2% at a concentration of 3g/L. The GO present in HT/GO-BZ enhanced the inhibition effect of HT-BZ. The presence of HT/GO-BZ improved the corrosion resistance of the waterborne epoxy coating.

8인치 직경의 304L 스테인리스강관의 부식특성에 미치는 제작공정의 영향 (Effect of Manufacturing Process on the Corrosion Properties of 304L Stainless Steel Pipe with 8-inch Diameter)

  • 김기태;허승영;장현영;김영식
    • Corrosion Science and Technology
    • /
    • 제17권6호
    • /
    • pp.279-286
    • /
    • 2018
  • Austenitic stainless steels used in nuclear power plants mainly use pipes made of seamless pipes, which depend on imports. The manufacturing process and high cost are some of the problems associated with seamless pipes. Therefore, in this study, the corrosion characteristics of the seamless pipe and the SAW pipe were assessed to determine the safety and reliability of the SAW pipe in a bid to replace the seamless pipe. Microstructure was analyzed using an optical microscope and the degree of hardness was measured using a Rockwell B scale. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. Anodic polarization test was performed in deaerated 1% NaCl solution at $30^{\circ}C$ and the U-bend method was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ at $340^{\circ}C$ and 40% NaOH solution at $290^{\circ}C$. Weld metal of the SAW pipe specimen showed relatively high degree of sensitization and intergranular corrosion rate. However, annealing to SAW pipes improved the corrosion properties in comparison to that of the seamless pipe.