DOI QR코드

DOI QR Code

Evaluation of Micro-Tubular SOFC: Cell Performance with respect to Current Collecting Method

마이크로 원통형 SOFC 특성평가: 집전방식에 따른 단위전지의 전기화학적 특성

  • Kim, Hwan (Hydrogen and Fuel Cell Department, Korea Institute of Energy Research) ;
  • Lee, Jong-Won (Hydrogen and Fuel Cell Department, Korea Institute of Energy Research) ;
  • Lee, Seung-Bok (Hydrogen and Fuel Cell Department, Korea Institute of Energy Research) ;
  • Lim, Tak-Hyoung (Hydrogen and Fuel Cell Department, Korea Institute of Energy Research) ;
  • Park, Seok-Joo (Hydrogen and Fuel Cell Department, Korea Institute of Energy Research) ;
  • Song, Rak-Hyun (Hydrogen and Fuel Cell Department, Korea Institute of Energy Research) ;
  • Shin, Dong-Ryul (Hydrogen and Fuel Cell Department, Korea Institute of Energy Research)
  • 김환 (한국에너지기술연구원 수소연료전지연구단) ;
  • 이종원 (한국에너지기술연구원 수소연료전지연구단) ;
  • 이승복 (한국에너지기술연구원 수소연료전지연구단) ;
  • 임탁형 (한국에너지기술연구원 수소연료전지연구단) ;
  • 박석주 (한국에너지기술연구원 수소연료전지연구단) ;
  • 송락현 (한국에너지기술연구원 수소연료전지연구단) ;
  • 신동열 (한국에너지기술연구원 수소연료전지연구단)
  • Received : 2012.01.26
  • Accepted : 2012.02.24
  • Published : 2012.02.28

Abstract

This paper presents the characterization of micro-tubular SOFCs using three different anode current collecting methods of inlet current collection (IC), both current collection (BC) and total current collection (TC). The maximum power densities of SOFCs at $750^{\circ}C$ using IC, BC and TC were 56 mW/$cm^2$ (0.43 V, 0.13 A/$cm^2$), 236 mW/$cm^2$ (0.43 V, 0.55 A/$cm^2$) and 261 mW/$cm^2$ (0.43 V, 0.61 A/$cm^2$) respectively. It was confirmed by impedance spectroscopy that both the polarization resistance and the ohmic resistance were dramatically increased at SOFC with IC.

Keywords

References

  1. G. A. Tompsett, C. Finnerty, K. Kendall, T. Alston, and N. M. Sammes, "Novel applications for micro SOFCs", J. Power Sources, Vol. 86, 2003, p. 376. https://doi.org/10.1016/S0378-7753(99)00418-8
  2. S. C. Singhal, "Solid oxide fuel cells for stationary, mobile, and military applications", Solid State Ionics, Vol. 152-153, 2002, p. 405. https://doi.org/10.1016/S0167-2738(02)00349-1
  3. J. Wang, Z. Lu, X. Huanga, K. Chena, N. Ai, J. Hua, and W. Su, "YSZ films fabricated by a spin smoothing technique and its application in solid oxide fuel cell", J. Power Sources, Vol. 163, 2007, p. 957. https://doi.org/10.1016/j.jpowsour.2006.09.064
  4. U. J. Yun, J. W. Lee, T. H. Lim, S. B. Lee, S. J. Park, R. H. Song, D. R. Shin and K. S. Han, "Evaluation of Properties and Fabrication of Tubular Supports Segmented-In-Series Solid Oxide Fuel Cell (SOFC)", Trans. of the Korean Hydrogen and New Energy Society, Vol. 21, No. 3, 2010, p. 214.
  5. K. Kendall, "Progress in microtubular solid oxide fuel cells", Int. J. Appl. Ceram. Technol., Vol. 7, No. 1, 2010, p. 1. https://doi.org/10.1111/j.1744-7402.2008.02350.x
  6. N. M. Sammes, Y. Du, and R. Bove, "Design and fabrication of a 100W anode supported microtubular SOFC stack", J. Power Sources, Vol. 145, 2005, p. 428. https://doi.org/10.1016/j.jpowsour.2005.01.079
  7. T. Suzuki, T. Yamaguchi, F. Fujishiro and M. Awano, "Current collecting efficiency of micro tubular SOFCs", J. Power Sources, Vol. 163, 2007, p. 737. https://doi.org/10.1016/j.jpowsour.2006.09.071
  8. S. B. Lee, K. S. Yun, T. H. Lim, R. H. Song, S. B. Lee, and D. R. Shin, "Development of anode supported micro-tubular SOFC stack for APU application", ECS Transactions, Vol. 7, 2007, p. 187. https://doi.org/10.1149/1.2729090
  9. S. H. Pi, S. B. Lee, R. H. Song, J. W. Lee, T. H. Lim, S. J. Park, D. R. Shin, and C. O. Park, "Effect of glass contents on the electrical and sintering property of $La_{0.8}Ca_{0.2}CrO_3/glass$ composite interconnects for solid oxide fuel cells", Int. J. Hydrogen Energy, Vol. 36, 2011, p. 3735.
  10. D. Cui, L. Liu, Y. Dong, and M. Cheng, "Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling", J. Power Sources, Vol. 174, 2007, p. 246. https://doi.org/10.1016/j.jpowsour.2007.08.094