• Title/Summary/Keyword: Polarization Performance

Search Result 515, Processing Time 0.023 seconds

Phase Noise Self-Cancellation Scheme Based on Orthogonal Polarization for OFDM System

  • Nie, Yao;Feng, Chunyan;Liu, Fangfang;Guo, Caili;Zhao, Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4334-4356
    • /
    • 2017
  • In orthogonal frequency-division multiplexing (OFDM) systems, phase noise introduced by the local oscillators can cause bit error rate (BER) performance degradation. To solve the phase noise problem, a novel orthogonal-polarization-based phase noise self-cancellation (OP-PNSC) scheme is proposed. First, the efficiency of canceling the phase noise of the OP-PNSC scheme in the AWGN channel is investigated. Then, the OP-PNSC scheme in the polarization-dependent loss (PDL) channel is investigated due to power imbalance caused by PDL, and a PDL pre-compensated OP-PNSC (PPC -OP-PNSC) scheme is proposed to mitigate the power imbalance caused by PDL. In addition, the performance of the PPC-OP-PNSC scheme is investigated, where the signal-to-interference-plus-noise ratio (SINR) and spectral efficiency (SE) performances are analyzed. Finally, a comparison between the OP-PNSC and polarization diversity scheme is discussed. The numerical results show that the BER and SINR performances of the OP-PNSC scheme outperform the case with the phase noise compensation and phase noise self-cancellation scheme.

XCP-OFDM System using Cross-handed Circular Polarization (역선회 원편파를 이용한 XCP-OFDM 시스템)

  • 김병옥;하덕호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.316-322
    • /
    • 2002
  • The Orthogonal Frequency Division Multiplexing(OFDM) is a special case of multicarrier transmission, where a single data stream is divided into many subcarriers and transferred in a parallel way. It reduces the necessary bandwidth using the orthogonality between the subcarriers. Therefore it requires the transmission channel which has stable characteristic. When the delay spread of the channel exceed the guard interval, then the orthogonality of the subcarriers cannot maintain and as a result the system performance degrade. In this paper, the XCP-OFDM(OFDM using cross-handed Circular Polarization) system is newly proposed. This system divides the channel in order to eliminate the overlapping of subcarrier's spectrum by using cross-handed circular polarization. Therefore, the proposed XCP-OFDM system can improve the performance without increasing the guard interval. Both theoretical analysis and simulation results are described.

A Study on the Anti-corrosion Properties of Organic and Inorganic Inhibitor by Electrochemical Evaluation Method in Saturated Aqueous Solution of Calcium Hydroxide (포화 수산화칼슘 수용액 내에서의 무기계 및 유기계 방청제의 전기화학적 방식 특성평가)

  • Kim, Soo-Young;Ryu, Hwa-Sung;Kim, Sung-Kil;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.66-74
    • /
    • 2013
  • In this study, corrosion potential ($E_{corr}$), corrosion rate, and polarization resistance were measured aimed at inorganic inhibitors (passive film type) and organic inhibitors (absorption type). The experiment was conducted using potentiostat for the variable molar ratio and chloride ion concentration of the components of inhibitors in an aqueous solution of saturated calcium hydroxide targeting corrosion. As a result, it was possible to ensure an anticorrosive performance of at least a 1.2 molar ratio of inorganic inhibitors. Also, the organic inhibitors ensured the prevention of the anticorrosive performance of at least about a 0.3 molar ratio. It also showed the tendency that between polarization resistance and corrosion rate, Ecorr and corrosion rate is inversely proportional to the linear. Conversely, the tendency between polarization resistance and Ecorr is proportional to the linear. Also, a distinct difference in organic and inorganic inhibitors' relationship to Ecorr, corrosion rate, and polarization resistance was not shown.

Experimental Study on the Effect of Antenna Polarization in WBAN Off-Body Channel (WBAN Off-Body 채널에서 안테나 편파의 영향 분석)

  • Jeon, Jaesung;Ahn, Byoungjik;Kim, Sunwoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • This paper investigates the effect of antenna polarization in Wireless Body Area Network(WBAN) off-body channel. The polarizations of antenna are divided into four combinations regarding Line-of-Sight(LOS) and Non-LOS(NLOS) environment. The human body keeps both still standing and moving to show that the impact of the polarization to signal. This paper confirms the performance depending on the polarization of receiver antenna and the combination of the polarizations on the off-body channel.

Maximum Ratio Transmission for Space-Polarization Division Multiple Access in Dual-Polarized MIMO System

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3054-3067
    • /
    • 2015
  • The phenomena of higher channel cross polarization discrimination (XPD) is mainly observed for future wireless technologies such as small cell network and massive multiple-input multiple-output (MIMO) system. Therefore, utilization of high XPD is very important and space-polarization division multiple access (SPDMA) with dual-polarized MIMO system could be a suitable solution to high-speed transmission in high XPD environment as well as reduction of array size at base station (BS). By SPDMA with dual-polarized MIMO system, two parallel data signals can be transmitted by both vertically and horizontally polarized antennas to serve different mobile stations (MSs) simultaneously compare to conventional space division multiple access (SDMA) with single-polarized MIMO system. This paper analyzes the performance of SPDMA for maximum ratio transmission (MRT) in time division duplexing (TDD) system by proposed dual-polarized MIMO spatial channel model (SCM) compare to conventional SDMA. Simulation results indicate that how SPDMA utilizes the high XPD as the number of MS increases and SPDMA performs very close to conventional SDMA for same number of antenna elements but half size of the array at BS.

Study on HTS Antenna Array with Circularly Polarization for DBS Receiver (직접 위성방송 수신용 원편파 HTS 배열 안테나 관한 연구)

  • 정동철;윤창훈;최효상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.776-781
    • /
    • 2004
  • We report the performance of a four-element, 11.67 GHz, $high-{T}_c$ superconducting (HTS) microstrip antenna array with corporate feed network. The HTS antenna array used in this work had a circular polarization for direct broadcasting satellite (DBS) system. Our array antennas were designed and built on a 0.5 mm thick MgO substrate. To compare the superconducting antennas with normal conducting counterpart, One antenna pattern was fabricated from gold thin film, and a second pattern was fabricated from ${YBa}_2{Cu}_3{O}_7-x(YBCO)$ superconducting thin film. To improve the axial ratio of circularly polarized arrays, sequential rotation technique were used. Efficiency, radiation pattern, return loss and bandwidth were measured for both antennas at cryogenic temperature and room temperature. The array produced good circular polarization, and the gain of the array at 77 K, relative to a copper array at room temperature was approximately 1.54 dB. The measured return loss of our HTS antenna array was 35.79 dB at the resonant frequency of 11.67 GHz and The total effective bandwidth was about 3.4 %. The results showed that high-temperature superconductors, when used in microstrip arrays, improved the efficiency of the HTS antenna array for circularly polarization.

Design and Fabrication of A Wide-Band Dual-Polarization Stacked Patch Array Antenna for Satellite SAR Applications (위성 SAR용 광대역 이중편파 적층형 패치 배열 안테나 설계 및 제작)

  • Lee, Jae-Min;Yu, Je-Woo;Chae, Heeduck;Lee, YuRi;Jung, Hwa-Young;Kim, JongPil;Park, Jongkuk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.72-78
    • /
    • 2021
  • This paper proposes a wide-band dual-polarization stacked patch array antenna for satellite SAR system applications. The array antenna was designed for loss minimization and wide-band characteristics to enhance the performance of the SAR system and optimize it for active return loss in applications to active phased arrays. The fabricated array antenna showed a performance of 19.26%/19.79% fractional bandwidth within the -10 dB reference level of the active return loss and showed loss characteristics of 0.797 dB/0.799 dB averaged within the operational frequency for both H/V-polarization cases. The pattern performance was verified by comparing the measured patterns with the calculated patterns obtained by the array factor.

Merging Radar Rainfalls of Single and Dual-polarization Radar to Improve the Accuracy of Quantitative Precipitation Estimation (정량적 강우강도 정확도 향상을 위한 단일편파와 이중편파레이더 강수량 합성)

  • Lee, Jae-Kyoung;Kim, Ji-Hyeon;Park, Hye-Sook;Suk, Mi-Kyung
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.365-378
    • /
    • 2014
  • The limits of S-band dual-polarization radars in Korea are not reflected on the recent weather forecasts of Korea Meteorological Administration and furthermore, they are only utilized for rainfall estimations and hydrometeor classification researches. Therefore, this study applied four merging methods [SA (Simple Average), WA (Weighted Average), SSE (Sum of Squared Error), TV (Time-varying mergence)] to the QPE (Quantitative Precipitation Estimation) model [called RAR (Radar-AWS Rainfall) calculation system] using single-polarization radars and S-band dual-polarization radar in order to improve the accuracy of the rainfall estimation of the RAR calculation system. As a result, the merging results of the WA and SSE methods, which are assigned different weights due to the accuracy of the individual model, performed better than the popular merging method, the SA (Simple Average) method. In particular, the results of TVWA (Time-Varying WA) and TVSSE (Time-Varying SSE), which were weighted differently due to the time-varying model error and standard deviation, were superior to the WA and SSE. Among of all the merging methods, the accuracy of the TVWA merging results showed the best performance. Therefore, merging the rainfalls from the RAR calculation system and S-band dual-polarization radar using the merging method proposed by this study enables to improve the accuracy of the quantitative rainfall estimation of the RAR calculation system. Moreover, this study is worthy of the fundamental research on the active utilization of dual-polarization radar for weather forecasts.

Performance Analysis of the Uni-Directional Radiation Equiangular Antenna over EBG Surface (EBG 표면 위의 단일 방향 복사 등각 안테나의 성능 해석)

  • Yoon, Sung Hyun;Kim, Jae Kwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.8
    • /
    • pp.1622-1630
    • /
    • 2015
  • In this study, we used EBG(electromagnetic band gap) reflector to change bi-directional radiation of circular polarization into uni-directional radiation of equiangular spiral antenna. When the height of spiral arm from EBG reflector is 0.07 wavelength of the lowest operating frequency, the axial ratio of the circular polarization was deteriorated. In this paper, we analyzed the magnitude and the time phase difference of $E_{\theta},E_{\phi}$ that generates right hand circle polarization that is co-polarization at +z direction and proposed the improving condition for axial ratio at all related frequency range. As a result, we obtained that the axial ratio was below 3[dB] at range of 3 ~ 10[dB], the gain was improved about 3[dB] with comparison to bi-directional radiation at free space, and $S_{11}$ was below -10[dB] at all related frequency range.

Effects of the Variables in the Fabrication of Anode on the Performance of DMFC (직접 메탄올 연료전지용 산화극 제조 변수가 성능에 미치는 영향)

  • Kim, Joon-Hee;Ha, Heung-Yong;Oh, In-Hwan;Hong, Seong-Ahn;Lee, Ho-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.18-22
    • /
    • 2003
  • Single cell performance has been investigated and characterized with variables in the fabrication of DMFC anode. The performance was checked as a function of ionomer content which affects ion conductivity in the catalyst layer, and catalyst slurry solvent which determines structure of agglomerates consisting of an ionomer and a catalyst. Anode with total ionomer to catalyst ratio of 0.6 showed the best performance and the lowest polarization resistance. Also, electrochemically effective surface area increased with ionomer content. As solubility of the ionomer decreases with decreasing solvent polarity, the size of agglomerates consisting of a catalyst and an ionomer became larger in the less polar solvent. The anode using DPK $(\varepsilon=12.60)$ as a solvent, which is less polar than generally-used water or alcohol species, showed the maximum performance and the lowest polarization resistance.