• Title/Summary/Keyword: Polarization Curve

Search Result 220, Processing Time 0.026 seconds

POLARIZATION-MAGNETIC FIELD CALIBRATION CURVE (편광-자기장 눈금조정 곡선)

  • Kim, Kap-Sung
    • Publications of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.1-21
    • /
    • 1997
  • We have obtained theoretical calibration curves to convert the amount of polarization into the strength of magnetic field, by a numerical calculation of radiation transfer for the polarized spectral line of FeI $6303{\AA}$. In our calculation, three kinds of atmospheric models (VAL-C, penumbra, umbra) have been used to make a proper calibration for an active region composed of quiet, penumbral and umbral areas. It was found that firstly, the results of our calculation depend highly on a kind of atmospheric model rather than on any other input parameters used in a model. Secondly, observed line profile showed m solar spectrum atlas proved to be very similar to the calculated profiles obtained by using a penumbra model. Finally, another method except this calibration curve should be developed to estimate correctly the distribution of magnetic field in solar active region from the observation of polarized spectral line.

  • PDF

Effects of Asymmetric Distribution of Charged Defects on the Hysteresis Curves of Ferroelectric Capacitors

  • Lee Kang-Woon;Kim Yong-Il;Lee Won-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.219-226
    • /
    • 2005
  • When a ferroelectric film has an inhomogeneous distribution of charged defects, a voltage shift in the polarization curve is induced by the internal field generated in the film. The direction and the magnitude of voltage shift in the P-V hysteresis curves obtained by the Sawyer-Tower method are different from those obtained by the virtual ground method. In this study, the asymmetric behavior in the P-V hysteresis curves of inhomogeneous ferroelectric films was investigated with a physical model and the polarization curves obtained by the Sawyer-Tower and the virtual ground methods are compared.

  • PDF

Influence of Shot Peening on the Corrosion of Spring Steel (스프링강의 부식에 미치는 쇼트피닝의 영향)

  • HA KYUNG-JUN;PARK KYUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.39-45
    • /
    • 2003
  • Shot peening is an effective method of improving the fatigue strength of components and structures. The compressive residual stress produced by surface plastic deformation with shot peening is usually regarded as the major factor in increasing fatigue strength. In this study, the influence of shot peening on corrosion was investigated. Spring steel immersed in $3.5\%$ NaCl prior was used to evaluate the effect of shot peening on fatigue properties. The immersion test was performed on the five kinds of specimens with shot peened and unpeened. The distributions of residual stresses of shot peened spring steels were measured in an X-ray diffraction apparatus, using the two-point method. Corrosion potential, polarization curve, residual stress, etc. were investigated, based on the experimental results. From test results, the effect of shot peening on the corrosion was evaluated.

Some Problems of the Partial Discharge Burning Time

  • Kinsht Nikolay V.;Katz Marat A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.319-323
    • /
    • 2006
  • The problem of the partial discharge (PD) extinction is investigated. The transient process takes place in a small spherical inclusion which is located in the dielectric. Both the losses caused by polarization and ohmic losses as the dielectric parameters are taken into account. From the inclusion standpoint the dielectric is considered as an active two-pole element (equivalent generator) and inclusion represents by own current-voltage curve. PD extinction voltage was shown to depend on the polarization loss tangent.

Determination of Electrode Potential in Micro Electrochemical Machining of Nickel (니켈의 미세 전해 가공 시 전극 전위의 선정)

  • Nam H.S.;Park B.J.;Kim B.H.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.585-588
    • /
    • 2005
  • The dissolution characteristic of metal shows the different tendency according to the applied electrical potential, the kind of electrolyte and pH value, etc. In the micro electrochemical machining (ECM), unfavorable oxide/passive layer formation and overall corrosion of electrodes must be prevented. The anodic polarization curve of nickel has distinct three dissolution regions, i.e. two active regions and the transpassive dissolution region. In this paper, the stable electrode potentials of workpiece and tool were determined in sulfuric acid and hydrochloric acid solution, respectively. In each solution, different machining property was shown and possible electrochemical reactions were discussed. On the basis of this experiment, the methodology to obtain the proper electrode potential was suggested.

  • PDF

Study on Improvement of Surface Properties of SKD61 Powder on S45C Using Laser Cladding

  • Cheol-Woo Kim;Hyo-Sang Yoo
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1465-1468
    • /
    • 2022
  • In this study, we investigated the effect of cladding on structural carbon steel (S45C) using 5%Cr-1.5%Mo-Fe powder (SKD61), which is expected to show economically efficient production of die-casting parts. The process conditions were performed under argon atmosphere using a diode laser source with specialized wavelength of 900-1070 nm, and the output conditions were 3, 4, and 5 kW, respectively. After the cladding was completed, the surface coating layer's shape and the microstructure were analyzed. The hardness test was carried out with Micro Vickers hardness tester under 500 gram-force along the normal line at the interval of 0.2 mm from the surface to core direction on the cross-sectional area. In addition, polarization curve test of the surface coating layer was performed to investigate the corrosion resistance characteristics.

Lossless Linear Polarization Rotator by Using a ECB Liquid Crystal Cell and a Quarter Wave Plate (ECB 액정 셀과 1/4 파장판을 이용하여 구성한 무손실 선형편광 회전기)

  • Jo, Jae-Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • We make a simple electrically controllable linear polarization rotator over $360^{\circ}$ without loss by using a thick ECB(electrically controlled birefringence) liquid crystal cell and a quarter wave plate at 514.5 nm wavelength. Its operating principle can be analyzed and explained by using simple polarization analysis and experimental data. We demonstrate that the degree of polarization of the rotator is 0.964 and the temporal variation for 1 week lies within ${\pm}1$ degree. We can easily solve the problem of nonlinearity of the dependence of the rotational angle of linear polarization on the applied voltage by changing the utilized voltage range or its fitting curve.

An Experimental Investigation of the Application of Artificial Neural Network Techniques to Predict the Cyclic Polarization Curves of AL-6XN Alloy with Sensitization

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.62-68
    • /
    • 2021
  • Artificial neural network techniques show an excellent ability to predict the data (output) for various complex characteristics (input). It is primarily specialized to solve nonlinear relationship problems. This study is an experimental investigation that applies artificial neural network techniques and an experimental design to predict the cyclic polarization curves of the super-austenitic stainless steel AL-6XN alloy with sensitization. A cyclic polarization test was conducted in a 3.5% NaCl solution based on an experimental design matrix with various factors (degree of sensitization, temperature, pH) and their levels, and a total of 36 cyclic polarization data were acquired. The 36 cyclic polarization patterns were used as training data for the artificial neural network model. As a result, the supervised learning algorithms with back-propagation showed high learning and prediction performances. The model showed an excellent training performance (R2=0.998) and a considerable prediction performance (R2=0.812) for the conditions that were not included in the training data.

Performance Simulation of Planar Solid Oxide Fuel Cells Characteristics: Computational Fluid Dynamics (전산 유체 모델링을 이용한 평판형 고체산화물 연료전지 작동특성 전산모사)

  • Woo Hyo Sang;Chung Yong-Chae
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • To correctly simulate performance characteristics of fuel cells with a modeling method, various physical and chemical phenomena must be considered in fuel cells. In this study, performance characteristics of planar solid oxide fuel cells were simulated by a commercial CFD code, CFD-ACE+. Through simultaneous considerations for mass transfer, heat transfer and charge movement according to electrochemical reactions in the 3-dimensional planar SOFC unit stack, we could successfully predict performance characteristics of solid oxide fuel cells under operation for structural and progress variables. In other words, we solved mass fraction distribution of reactants and products for diffusion and movement, and investigated qualitative and quantitative analysis for performance characteristics in the SOFC unit stack through internal temperature distribution and polarization curve for electrical characteristics. Through this study, we could effectively predict performance characteristics with variables in the unit stack of planar SOFCs and present systematic approach for SOFCs under operation by computer simulation.

Influence of Corrosion Potential and Current Density on Polarization Curve Variations using Polycarbonate[III]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu;Kim, Myung-Sun;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves using polycarbonate. The results were particularly examined to identify the influences affecting the corrosion potential including various conditions such as temperature, pH, catalytic enzyme, and salt. The lines representing the active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme, and salt. The tafel slope for the anodic dissolution was determined based on the polarization effect with various conditions. The slope of the polarization curves describing the active-to-passive transition region were noticeably shifted in direction. Also, from the variation in the conditions, the optimum conditions were established for the most rapid transformation, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(Ir/If). The value of Ir/If was then used in measuring the extent of the critical corrosion sensitivity of the polycarbonate. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF