• Title/Summary/Keyword: Polar Coordinate System

Search Result 87, Processing Time 0.027 seconds

Analytical Investigation on Elastic Behaviors of Isotropic Annular Sector Plates Subjected to Uniform Loading (등분포하중을 받는 등방성 환형 섹터판의 탄성 거동에 대한 해석적 연구)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.241-251
    • /
    • 2010
  • This paper presents the development of a new analytical solution to the governing differential equation for isotropic annular sector plates subjected to uniform loading in a three-dimensional polar coordinate system. The 4th order governing partial differential equation (PDE) was converted to an ordinary differential equation (ODE) by assuming the Levy-type series solution form and the subsequent mathematical operations. Finally, a series-type solution was assembled with homogeneous and nonhomogeneous solution parts after operating real values and complex conjugates derived from the characteristic equation. To demonstrate the convergence rate and the accuracy of the featured method, several examples with various sector angles were selected and solved. The deflections and internal moments in the example annular sector plates that were obtained from the proposed solution were compared with those obtained from other analytical studies and numerical analyses using the finite element analysis package program, ABAQUS. Very good agreement with the results of other analytical and numerical methodologies was shown.

Part1 : Numerical Code Validation and Quantitative Analyses of Ice Accretion around Airfoils (Part1 : 익형 주위 결빙 예측 코드 검증 및 정량적 분석)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1094-1104
    • /
    • 2010
  • In the previous studies, the validation of numerical codes has been conducted based on the qualitative comparison of predicted ice shapes with experiments, which poses a significant limit on the systematic analysis of ice shapes due to the variation of meteorological conditions. In response to this, the numerical code has been quantitatively validated against available experiment for the ice accretion on cylinders and airfoils in the present study. Ice shapes accumulated on the bodies are systematically investigated with respect to various icing parameters. To this end, maximum thickness, heading direction and ice thickness are quantified and expressed in the polar coordinate system for the comparison with other numerical results. By applying the quantitative analysis, similar shapes are intuitively distinguished. The developed numerical code underestimates the ice accretion area and the ice thickness of lower surface. In order to improve the accuracy, further accurate aerodynamic solver is required for the water droplet trajectories.

Display-Pixel-Based Focusing Method for Ultrasound Imaging (의료 초음파 영상을 위한 화소단위 집속기법)

  • 황재섭;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.419-431
    • /
    • 2000
  • In this paper, a new beamforming technique is proposed, which can completely eliminate all the artifacts caused by digital scan converter. In the proposed method, named display-pixel-based focusing(DPBF) by the authors, ultrasound waves are focused directly at the display pixels instead of sampling points on the polar coordinate. Consequently. the DPBF system does not require the digital scan converter. To verify the proposed method, we modified a commercial scanner and performed experiments with a 3.5 MHz convex array and a 7.5 MHz linear array. We also defined and measured ICRA/B(Image Coarseness Ratio) to compare the image quality quantitatively. The experimental results with in vivo and in vitro data show that the proposed method improves the ICRA/B considerably, resulting in much smoother and finer images.

  • PDF

Eddy Current Loss Analysis in Radial Flux Type Synchronous Permanent Magnet Coupling using Space Harmonic Methods (공간고조파법을 이용한 반경방향 영구자석을 갖는 자기커플링의 와전류 손실 해석)

  • Min, Kyoung-Chul;Kang, Han-Bit;Park, Min-Gyu;Cho, Han-Wook;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1377-1383
    • /
    • 2014
  • This paper deals with eddy current loss of magnetic coupling with radial permanent magnet (PM) using analytical method such as a space harmonic method. Superposition of two kinds analysis model is used to analyze eddy current loss induced in inner PM and outer PM of magnetic coupling. When the eddy current is induced, the environmental temperature increases, and the permanent magnet(PM) characteristics are degraded because the performance of PM is greatly influenced by temperature rise. Hence, the calculation of eddy current loss becomes an important factor in the magnetic coupling. In order to analyze eddy current loss, first, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radial magnetized PM are obtained. And we obtain the analytical solutions for the eddy current density produced by permanent magnet. Lastly, analytical solutions for eddy current loss are derived by using equivalent, electrical resistance calculated from magnet volume and analytical solution for eddy current density. This analytical results are validated by comparing with the 2-D finite element analysis (FEA).

Calculation of Satellite's Power Generation by the Earth Albedo (지구 알베도에 의한 위성의 생산전력 계산)

  • Choi, Won-Sub;Kim, Kiduck;Kim, Hae-Dong
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.76-84
    • /
    • 2021
  • Because solar panels of normal satellites are faced to the sun, the power generation by the Earth Albedo is almost neglected in satellite's power analysis. However, many cubesats don't have deployable solar panels and in this case the Earth Albedo is not negligible because solar panels are in six sides facing different directions. In this paper, we calculated satellite's power generation by the Earth Albedo. We divided the Earth's surface into grids based on polar coordinate system. We modeled power generation in each solar cell by reflection on these grids. We simulated 1 U cubesat which flies in sun synchronous orbit and 500 km altitude so that we calculated satellite's power generation by the Earth Albedo.

Projection-type Fast Spin Echo Imaging (프로젝션 타입 고속 스핀 에코 영상)

  • 김휴정;김치영;김상묵;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.4 no.1
    • /
    • pp.42-51
    • /
    • 2000
  • Purpose: Projection-type Fast Spin Echo (PFSE) imaging is robust to patient motion or flow related artifact compared to conventional Fast Spin Echo (FSE) imaging, however, it has difficulty in controlling $T_2$ contrast. In this paper, Tz contrast in the PFSE method is analyzed and compared with those of the FSE method with various effective echo times by computer simulation. The contrasts in the FSE and PFSE methods are also compared by experiments with volunteers. From the analysis and simulation, it is shown that ${T_2}-weighted$ images can well be obtained by the PFSE method proposed. Materials and methods: Pulse sequence for the PFSE method is implemented at a 1.0 Tesla whole body MRI system and $T_2$ contrasts in the PFSE and FSE methods are analyzed by computer simulation and experiment with volunteers. For the simulation, a mathematical phantom composed of various $T_2$ values is devised and $T_2$ contrast in the reconstructed image by the PFSE is compared to those by the FSE method with various effective echo times. Multi-slice ${T_2}-weighted$ head images of the volunteers obtained by the PFSE method are also shown in comparison with those by the FSE method at a 1.0 Tesla whole body MRI system. Results: From the analysis, $T_2$ contrast by the PFSE method appears similar to those by the FSE method with the effective echo time in a range of SO-lOOms. Using a mathematical phantom, contrast in the PFSE image appears close to that by the FSE method with the effective echo time of 96ms. From experiment with volunteers, multi-slice $T_2-weighted$ images are obtained by the PFSE method having contrast similar to that of the FSE method with the effective echo time of 96ms. Reconstructed images by the PFSE method show less motion related artifact compared to those by the FSE method. Conclusion: The projection-type FSE imaging acquires multiple radial lines with different angles in polar coordinate in k space using multiple spin echoes. The PFSE method is robust to patient motion or flow, however, it has difficulty in controlling $T_2$ contrast compared to the FSE method. In this paper, it is shown that the PFSE method provides good $T_2$ contrast (${T_2}-weighted$ images) similar to the FSE method by both computer simulation and experiments with volunteers.

  • PDF

Analysis of transmissivity tensor in an anisotropic aquifer (이방성 대수층에서의 투수량계수텐서 해석)

  • 강철희;이대하;김구영;이철우;김용제;우남칠
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.53-61
    • /
    • 2002
  • An Aquifer test was carried out on five boreholes to determine the hydrologic anisotropy and the major groundwater flow direction in the aquifer system of the study area. With an assumption of the aquifer's anisotropy and homogeneity, the major transmissivity(T(equation omitted)), the minor transmissivity( $T_{ηη}$ ), and primary tensor direction ($\theta$) for each borehole were determined from the test. Besides the boreholes BH-1, BH-4 and BH-5, the anisotropy transmissivity tensor values of BH-2 and BH-3 did not correspond with the assumption. Thereafter the values were plotted on the polar coordinate, and showed that the tensor values were out of the anisotropy ellipsoid due to the high heterogeneity of BH-2 and BH-3 comparing with the other boreholes. Therefore. the anisotropy of the aquifer was examined from BH-1, BH-4. and BH-5. In BH-1, T(equation omitted) is 171.9 $\m^2$/day. $T_{ηη}$ is $71.01\m^2$/day, and the principal tensor direction is Nl5.39$^{\circ}$E. In BH-4. T(equation omitted) is $268.2 \m^2$/day, $T_{ηη}$ / is $28.75\m^2$/day and the principal tensor direction is N7.55$^{\circ}$E. In BH-5, T(equation omitted) is $168.4\m^2$/day, $T_{ηη}$ is 66.80 $\m^2$/day, and the principal tensor direction is $N76.59^{\circ}$E. On the basis of teleview logging performed on each borehole. the principal fracture directions were revealed as $N0^{\circ}$~4$^{\circ}$E/$30^{\circ}$~$50^{\circ}$SE and $N30^{\circ}$~$80^{\circ}$W/$20^{\circ}$~$50^{\circ}$NE that are the most frequently occurred sets as well as that correspond well with the calculated transmissivity tensor.