We are often faced with the task of having to estimate the amplitude of a source signal in the presence of a background. In the simplest case, the background can be taken as being flat, and of unknown magnitude B, and the source signal of interest assumed to be the amplitude A of a peak of known shape and position. We present a robust method to find the most probable values of A and B by applying the one-dimensional Newton-Raphson method. In the derivation of the formula, we adopted the Bayesian statistics and assmumed Poisson distribution so that the results could be applied to the analysis of very weak signals, as observed in FIMS (Far-ultraviolet IMaging Spectrogaph).
Bonneterre, Vincent;Bicout, Dominique Joseph;De Gaudemaris, Regis
Safety and Health at Work
/
제3권2호
/
pp.92-100
/
2012
Objectives: The French National Occupational Diseases Surveillance and Prevention Network (RNV3P) is a French network of occupational disease specialists, which collects, in standardised coded reports, all cases where a physician of any specialty, referred a patient to a university occupational disease centre, to establish the relation between the disease observed and occupational exposures, independently of statutory considerations related to compensation. The objective is to compare the relevance of disproportionality measures, widely used in pharmacovigilance, for the detection of potentially new disease ${\times}$ exposure associations in RNV3P database (by analogy with the detection of potentially new health event ${\times}$ drug associations in the spontaneous reporting databases from pharmacovigilance). Methods: 2001-2009 data from RNV3P are used (81,132 observations leading to 11,627 disease ${\times}$ exposure associations). The structure of RNV3P database is compared with the ones of pharmacovigilance databases. Seven disproportionality metrics are tested and their results, notably in terms of ranking the disease ${\times}$ exposure associations, are compared. Results: RNV3P and pharmacovigilance databases showed similar structure. Frequentist methods (proportional reporting ratio [PRR], reporting odds ratio [ROR]) and a Bayesian one (known as BCPNN for "Bayesian Confidence Propagation Neural Network") show a rather similar behaviour on our data, conversely to other methods (as Poisson). Finally the PRR method was chosen, because more complex methods did not show a greater value with the RNV3P data. Accordingly, a procedure for detecting signals with PRR method, automatic triage for exclusion of associations already known, and then investigating these signals is suggested. Conclusion: This procedure may be seen as a first step of hypothesis generation before launching epidemiological and/or experimental studies.
Journal of information and communication convergence engineering
/
제21권3호
/
pp.208-215
/
2023
Deep learning techniques provide powerful solutions to several pattern-recognition problems, including Raman spectral classification. However, these networks require large amounts of labeled data to perform well. Labeled data, which are typically obtained in a laboratory, can potentially be alleviated by data augmentation. This study investigated various data augmentation techniques and applied multiple deep learning methods to Raman spectral classification. Raman spectra yield fingerprint-like information about chemical compositions, but are prone to noise when the particles of the material are small. Five augmentation models were investigated to build robust deep learning classifiers: weighted sums of spectral signals, imitated chemical backgrounds, extended multiplicative signal augmentation, and generated Gaussian and Poisson-distributed noise. We compared the performance of nine state-of-the-art convolutional neural networks with all the augmentation techniques. The LeNet5 models with background noise augmentation yielded the highest accuracy when tested on real-world Raman spectral classification at 88.33% accuracy. A class activation map of the model was generated to provide a qualitative observation of the results.
교차로는 단일로에 비해 많은 상충점을 가지고 있어 사고의 잠재성이 더욱 높다고 볼 수 있다. 2006년 경찰청 자료에 의하면 교차로 부근의 교통사고가 단일로 교통사고에 비해 크게 증가하고 있는 것으로 나타났다. 그 중 신호교차로의 경우는 비신호교차로에 비해 교통사고 영향요인이 다양하고 개선의 여지가 많아 사고가 일어나는 원인을 예측하고, 교차로 위험요소에 따른 적절한 대비책을 사전에 마련할 수 있다면 안전측면에서 큰 효과를 얻을 것으로 기대된다. 본 연구에서는 도시부 4지 신호교차로를 대상으로 과거 사고이력자료와 교차로 현장 조사를 활용하여 사고예측 모형 및 사고심각도 모형을 개발하였다. 본 연구는 크게 4단계로 나누어 진행되었다. 첫째, 기존 연구된 사고모형을 분석하였으며 둘째, 교통사고에 영향을 미치는 변수를 선정하였고 셋째, 통계적 방법론을 활용한 사고예측모형을 개발, 넷째, 모형의 검증을 실시하였다. 본 연구에서 개발된 신호교차로 교통사고 모형은 계획 및 운영단계에서 신호교차로의 안전성을 측정하는데 활용될 수 있으며, 궁극적으로 신호교차로의 교통사고를 줄이는데 기여할 수 있을 것으로 판단된다.
철도건널목사고는 일반 도로사고보다는 상대적으로 사고의 발생도는 적으나, 사고의 심각도면에서는 대형사고로 연결될 수 있다는 점에서 철도건널목에서의 안전성 확보는 결코 소홀히 다루어질 수 없다. 본 연구에서는 건널목 사고모델을 통해 건널목 사고에 영향을 미치는 요인들은 분석하고 이를 정량화하여 교차로 안전성 향상에 기여하고자 한다. 본 연구에서는 건널목사고 분석에 있어서 사고데이터 특성을 고려하여 비선형 회귀분석 중 적정 모델식을 적용하였다. 철도건널목 관련 변수들을 이용하여 분석한 결과, 분산값이 0에 가까운 값을 나타내어 포아송 회귀분석이 적합한 것으로 나타났다. 또한 본 연구에서는 주 모델과 후보모델 통해 건널목 사고에 영향을 미치는 7개의 주요설명변수들을 규명했는데 그 변수들은 차량 교통량과 철도교통량, 상업지역, 제어거리, 경보시간차, 건널목유형, 과속방지턱으로 분석되었다.
암석의 강도 및 건전성 평가에 있어 전단파를 사용하는 것이 압축파에 비해 높은 신뢰성과 정확도를 제공한다. 암편의 $V_S$ 도출을 위해 양단자유공진주기법을 수행할 시 비틀림파에 의한 공진주파수를 구분해야 하나 쉽지 않은 상황이 자주 발생한다. 또한, 초음파속도기법에서는 P파에 비해 S파 도달 시점이 모호하여 암편의 $V_S$를 객관적으로 산출하는 것이 쉽지 않다. 반면에 초음파 속도법을 통해서는 $V_P$ 값을, 양단자유공진주기법을 통해서는 $V_L$ 값을 안정적으로 획득할 수 있는데 탄성계수간의 관계식을 이용하여 포아송비를 계산할 수 있게 되며 $V_S$ 값을 산출할 수 있다. 알루미늄, 모노캐스트 등 다른 재질과 다른 길이를 가지는 모형 시편을 이용하여 검증 실험을 수행하였고 국내 여러 지역에서 채취한 암석시편에 대해서 제안된 방법을 적용하여 본 결과 제안된 방법의 유용함을 확인할 수 있었다.
현재 도로사업의 타당성 조사 시 사용하는 교통사고 감소편익 산정시 도로등급별로 사고율을 일률적으로 적용하고 있고, 도로특성 및 V/C에 따른 특성이 고려되고 있지 못하고 있다. 이와 같은 문제점을 해결하기 위해 본 논문에서는 도로유형별 V/C 및 교통 특성을 반영하여 사고를 예측할 수 있는 모형을 개발하여 도로의 신설 및 개량에서 그 도로의 안전성을 평가할 수 있는 방법론을 제시하였다. 본 연구에서는 초기 단계로서 도시지역 도로를 대상으로 하여 모형을 개발하였다. 우선 도로유형별로 사고에 영향을 미치는 요인을 선정하였다. 이 때 선정 기준은 도로설계단계에서 획득할 수 있는 자료를 위주로 선정하였으며. 교통량, 중앙분리대의 유 무, 교차점수. 연결로수, 횡단신호등수 그리고 차로수를 선정하였다. 각 요인과 사고와의 관계를 분석해 본 결과 모두 통계적으로 유의한 수준에서 상관성이 있는 것으로 나타났다. 본 연구에서는 도로의 등급 및 V/C에 따라 4가지 유형으로 분류하고, 각각에 대하여 포아송 선형회귀식을 통하여 사고예측모형을 도출하였으며, 실제 자료를 이용하여 검증하였다. 검증결과 모형식의 결과가 실제 사고 자료에 대해 비교적 양호하게 추정력을 보이는 것으로 나타났다. 본 연구에서는 V/C에 따른 도로유형별 사고예측모형을 개발함으로써 도로의 물리적인 특성으로 인한 교통사고예측이 가능하고, 이 결과를 도로의 신설 및 개량에 대한 타당성 조사시 사고비용을 추정하는데 활용할 수 있을 것이라 판단된다. 본 연구에서 이용한 자료가 전라북도 한 지역으로 한정되어있어 전국적인 대표성을 지니는 데에는 한계가 있을 수 있다는 사실을 밝히고자한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.