• Title/Summary/Keyword: Poisson effect

Search Result 331, Processing Time 0.026 seconds

On the tensile strength of brittle materials with a consideration of Poisson's ratios

  • Hu Guoming;Cho Heechan;Wan Hui;Ohtaki Hideyuki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.603-610
    • /
    • 2003
  • The influence of Poisson's ratio on the tensile strength of brittle materials is neglected in many studies. When brittle materials are loaded in compression or impact, substantial tensile stresses are induced within the materials. These tensile stresses are responsible for splitting failure of the materials. In this paper, the state of stress in a spherical particle due to two diametrically opposed forces is analyzed theoretically. A simple equation for the state of stress at the center of the particle is obtained. An analysis of the distribution of stresses along the z-axis due to distributed pressures and concentrated forces, and on diametrically horizontal plane due to concentrated forces, shows that it is reasonable to propose the tensile stress at the center of the particle at the point of failure as a tensile strength of the particle. Moreover, the tensile strength is a function of the Poisson's ratio of the material. As the state of stress along the z-axis in an irregular specimen tends to be similar to that in a spherical particle compressed diametrically with the same force, this tensile strength has some validity for irregular particles as well. Therefore, it can be proposed as the tensile strength for brittle materials generally. The effect of Poisson's ratio on the tensile strength is discussed.

  • PDF

Performance Evaluation of Set-top Box Energy Saving using Poisson Process Modeling (포아송 프로세스 모델링을 통한 셋톱박스 에너지 절감 성능 분석)

  • Kim, Yong-Ho;Kim, Hoon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.1
    • /
    • pp.33-39
    • /
    • 2011
  • This paper considers a performance analysis of set-top box (STB) power saving schemes. STB converts the signal into content which is then displayed on the television (TV) screen, and there are typically two operation modes: on mode and stand-by mode. The total energy consumption (TEC), a typical measure of power consumption of STB, is defined by the sum of power consumption in each mode. Recently there are some works of STB power saving schemes that transit STB operation modes efficiently, and the mode transition time point of those schemes can be different. Thus it is required to develop a performance evaluation method that reflects mode transition time points of each scheme to get TEC correctly. This paper proposes a performance evaluation method for STB power consumption using Poisson process to consider the mode transition time point. By modeling STB mode transitions as events of Poisson process, the average time duration of STB mode is computed and accordingly the effect of power saving is evaluated. The performance evaluation result shows that the proposed method achieves 1 to 19% improvement in power consumption compared with a conventional performance evaluation method.

  • PDF

Characterization of a carbon black rubber Poisson's ratio based on optimization technique applied in FEA data fit

  • Lalo, Debora Francisco;Greco, Marcelo;Meroniuc, Matias
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.653-661
    • /
    • 2020
  • The paper presents a study regarding rubber compressibility behavior. The objective is to analyze the effect of compression degree of rubber on its mechanical properties and propose a new methodology based on reverse engineering to predict compressibility degree based on uniaxial stretching test and Finite Element Analysis (FEA). In general, rubbers are considered to be almost incompressible and Poisson's ratio is close to 0.5. Since this property is intimately related to the rubber packing density, little changes in Poisson's ratio can lead to significant changes regarding mechanical behavior. The deviatory hyperelastic constants were obtained through experimental data fitting by least squares method for the most relevant constitutive models implemented in commercial software Abaqus, such as: Neo-Hooke, Mooney-Rivlin, Ogden, Yeoh and Arruda-Boyce, whereas the hydrostatic part was determined through an optimization algorithm implemented in the Abaqus environment by Python scripting. The simulation results presented great influence of the Poisson's ratio in the rubber specimen mechanical behavior mainly for high strain levels. A conventional pure volumetric compression test was also carried out in order to compare the results obtained by the proposed methodology.

MISCLASSIFICATION IN SIZE-BIASED MODIFIED POWER SERIES DISTRIBUTION AND ITS APPLICATIONS

  • Hassan, Anwar;Ahmad, Peer Bilal
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.55-72
    • /
    • 2009
  • A misclassified size-biased modified power series distribution (MSBMPSD) where some of the observations corresponding to x = c + 1 are misclassified as x = c with probability $\alpha$, is defined. We obtain its recurrence relations among the raw moments, the central moments and the factorial moments. Discussion of the effect of the misclassification on the variance is considered. To illustrate the situation under consideration some of its particular cases like the size-biased generalized negative binomial (SBGNB), the size-biased generalized Poisson (SBGP) and sizebiased Borel distributions are included. Finally, an example is presented for the size-biased generalized Poisson distribution to illustrate the results.

  • PDF

Prediction of Elastic Modulus of Unidirectional Short Fiber Composite Materials (일방향으로 배열된 단섬유 보강 복합재료의 탄성률 예측)

  • 임태원;권영두;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.407-412
    • /
    • 1990
  • Elastic modulus of unidirectional short fiber composite has theoretically derived with the consideration of Poisson's ratios of matrix and fiber. Unidirectional short fiber composite is modeled as an aggregate of grains developed by Kerner. Under the assumption of extra strain at fiber ends, the strain distribution along the fiber's length is determined, and the elastic modulus is derived from this distribution. For the consideration of effects of Poisson's ratio, Kerner's results for particulate composites are adapted as boundary conditions. The effect of differences in Poisson's ratio of fiber and matrix on elastic modulus is studied. Proposed equation shows a good agreement with experimental data of Halpin and Tock, et al.

Maximum Likelihood Estimation Using Laplace Approximation in Poisson GLMMs

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.971-978
    • /
    • 2009
  • Poisson generalized linear mixed models(GLMMs) have been widely used for the analysis of clustered or correlated count data. For the inference marginal likelihood, which is obtained by integrating out random effects is often used. It gives maximum likelihood(ML) estimator, but the integration is usually intractable. In this paper, we propose how to obtain the ML estimator via Laplace approximation based on hierarchical-likelihood (h-likelihood) approach under the Poisson GLMMs. In particular, the h-likelihood avoids the integration itself and gives a statistically efficient procedure for various random-effect models including GLMMs. The proposed method is illustrated using two practical examples and simulation studies.

Claims Reserving via Kernel Machine

  • Kim, Mal-Suk;Park, He-Jung;Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1419-1427
    • /
    • 2008
  • This paper shows the kernel Poisson regression which can be applied in the claims reserving, where the row effect is assumed to be a nonlinear function of the row index. The paper concentrates on the chain-ladder technique, within the framework of the chain-ladder linear model. It is shown that the proposed method can provide better reserve estimates than the Poisson model. The cross validation function is introduced to choose optimal hyper-parameters in the procedure. Experimental results are then presented which indicate the performance of the proposed model.

  • PDF

Kernel Poisson Regression for Longitudinal Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1353-1360
    • /
    • 2008
  • An estimating procedure is introduced for the nonlinear mixed-effect Poisson regression, for longitudinal study, where data from different subjects are independent whereas data from same subject are correlated. The proposed procedure provides the estimates of the mean function of the response variables, where the canonical parameter is related to the input vector in a nonlinear form. The generalized cross validation function is introduced to choose optimal hyper-parameters in the procedure. Experimental results are then presented, which indicate the performance of the proposed estimating procedure.

  • PDF

Adaptive-Predictive Controller based on Continuous-Time Poisson-Laguerre Models for Induction Motor Speed Control Improvement

  • Boulghasoul, Z.;El Bahir, L.;Elbacha, A.;Elwarraki, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.908-925
    • /
    • 2014
  • Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.

Analytical Modeling and Simulation of Dual Material Gate Tunnel Field Effect Transistors

  • Samuel, T.S.Arun;Balamurugan, N.B.;Sibitha, S.;Saranya, R.;Vanisri, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1481-1486
    • /
    • 2013
  • In this paper, a new two dimensional (2D) analytical model of a Dual Material Gate tunnel field effect transistor (DMG TFET) is presented. The parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions. The simple and accurate analytical expressions for surface potential and electric field are derived. The electric field distribution can be used to calculate the tunneling generation rate and numerically extract tunneling current. The results show a significant improvement of on-current and reduction in short channel effects. Effectiveness of the proposed method has been confirmed by comparing the analytical results with the TCAD simulation results.