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Abstract
Poisson generalized linear mixed models(GLMMs) have been widely used for the analysis of clustered or

correlated count data. For the inference marginal likelihood, which is obtained by integrating out random effects,
is often used. It gives maximum likelihood(ML) estimator, but the integration is usually intractable. In this
paper, we propose how to obtain the ML estimator via Laplace approximation based on hierarchical-likelihood
(h-likelihood) approach under the Poisson GLMMs. In particular, the h-likelihood avoids the integration itself
and gives a statistically efficient procedure for various random-effect models including GLMMs. The proposed
method is illustrated using two practical examples and simulation studies.

Keywords: H-likelihood, laplace approximation, marginal likelihood, generalized linear mixed
models, random effects.

1. Introduction

Poisson GLMMs, Poisson generalized linear models (GLMs; Nelder and Wedderburn, 1972) with
normally distributed random effects, have been widely used for the analysis of clustered or correlated
count data (Breslow and Clayton, 1993). For the inference likelihood-based (Breslow and Clayton,
1993; Booth and Hobert, 1999) and Bayesian (Besag et al., 1995; Efron, 1996) methods have been
usually used.

In this paper we are interested in ML inference under Poisson GLMMs which gives a good asymp-
totic property (Jiang, 2007). However, the marginal likelihood involves intractable integrals whose di-
mension depends on the structure of random effects. To overcome this problem, various numerical ap-
proximation methods have been proposed; for example, expectation maximization(EM), Monte Carlo
EM(MCEM), Gauss-Hermite quadrature(GHQ) approximation and the Laplace approximation(LA).
The EM method still requires an integration for the E-step. Even though MCEM avoids integration
by using a Monte Carlo method, it is also still computationally intensive (Gueorguieva, 2001). The
GHQ method is not available for the models more than two random-effect terms (Huber et al., 2004).

Breslow and Clayton (1993) proposed the penalized quasi-likelihood(PQL) method based on the
LA of the marginal likelihood which is easy to implemented. However, the PQL methods leads to
biased estimates, particularly for dispersion parameters (Jiang, 2007). In this paper we propose the
use of LA using the h-likelihood method (Lee and Nelder, 1996, 2001). In particular, the h-likelihood
avoids the difficult integration itself and gives a statistically efficient procedure for various random-
effect models including GLMMs (Lee et al., 2006). In this paper, we consider the Poisson GLMMs

This work was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2008-521-
C00057).

1 Professor, Department of Asset Management, Daegu Haany University, Gyeongsan, 712-715, Korea.
E-mail: idha@dhu.ac.kr



972 Il Do Ha

with one-random component. The proposed LA method is compared with the marginal GHQ method
based on SAS NLMIXED procedure.

The paper is organized as follows. In Section 2 we briefly describe the structures of data and
models. In Section 3 we show how to obtain the LA estimators via the h-likelihood. The proposed
method is demonstrated with two practical examples and simulation study in Section 4. Finally, some
concluding remarks are given in Section 5.

2. The Model
Let yi j (i = 1, . . . , q, j = 1, . . . , ni, n =

∑
i ni) be the count response for the jth observation of the

ith individual (or cluster). Denoted by vi the unobserved random effect of the ith individual. Then the
Poisson GLMMs with one random-effect term vi are described as follows:

(i) Given vi, yi j are independent and follow the Poisson distribution with mean µi j having

log µi j = xT
i jβ + vi. (2.1)

(ii) vi ∼ N(0, α) and vi’s are independent.

Here xi j = (1, xi j1, . . . , xi jp)T is a vector of fixed covariates and β is a (p+1)×1 vector of fixed effects.
The α is called dispersion parameter. Note that if α = 0 (i.e. vi = 0 for all i ) then the above model
becomes the Poisson GLM.

3. Laplace Approximated ML Estimator

Following Lee and Nelder (1996), the h-likelihood for the model (2.1), denoted by h, is defined by

h = h(β, v, α) =
∑

i j

`1i j +
∑

i

`2i, (3.1)

where

`1i j = `1i j(β; yi j|vi) = yi j log µi j − µi j − log yi j!

is the logarithm of the conditional density function for yi j given vi, and

`2i = `2i(α; vi) = −
1
2

log(2πα) −
1

2α

∑
i

v2
i

is the logarithm of the density function for vi. Here v = (v1, . . . , vq)T . The corresponding marginal
likelihood m can be obtained by integrating out the random effects from the h-likelihood:

m = m(β, α) =
∑

i

log
{∫

exp(hi) dvi

}
, (3.2)

where hi =
∑

j `1i j + `2i is the contribution of the ith individual to h in (3.1). The maximizing the
marginal likelihood m gives ML estimators. However, the integration in (3.2) can’t be computed ex-
plicitly except for Poisson-gamma model (Lee and Nelder, 1996). Thus, an approximation of this
integral is needed. Thus, we consider the first-order Laplace approximation (LA1), pv(h), to m. Fol-
lowing Barndorff-Nielsen and Cox (1989, p.60), as n∗ = min1≤i≤q ni → ∞ we have

m = pv(h) + O
(
n∗−1

)
(3.3)
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with

pv(h) =

[
h −

1
2

log det
{

D(h, v)
(2π)

}] ∣∣∣∣∣∣
v=v̂

,

where D(h, v) = −∂2h/∂v2 and v̂ solves ∂h/∂v = 0. Note that pv(h) in (3.3) produces an adjusted
profile h-likelihood for (β, α) after eliminating random effects v (Lee and Nelder, 2001). Thus, the
LA1 estimator is obtained by maximizing pv(h); it can be expressed as

pv(h) = ĥ −
1
2

log det
(
D̂
)

+
q
2

log(2π), (3.4)

where ĥ = h|v=v̂ is a profile likelihood for (β, α) after eliminating v, D̂ = D(h, v̂) = ZT ŴZ + U,
Ŵ = diag(µ̂) is a diagonal weight matrix with n × 1 main diagonal vector µ̂ = exp(Xβ + Zv̂) whose
i jth element is µi j = exp(xT

i jβ + vi), and U = α−1Iq with q dimensional identity matrix. Here, X is the
n × (p + 1) model matrix whose ith row vector is xT

i j and Z is the n × q group indicator matrix whose
ith row vector is zT

i j.

3.1. Estimation of fixed effects

Given α, the LA1 estimators for fixed effects β are obtained by solving

∂pv(h)
∂βk

= 0 (k = 1, . . . , p). (3.5)

The equation on left hand side of (3.5) is computed by the following procedure. From (3.4) we have

∂pv(h)
∂βk

=
∂ĥ
∂βk
−

1
2

tr
(
D̂−1 ∂D̂

∂βk

)
.

Here

∂ĥ
∂βk

=
∂h
∂βk

∣∣∣∣∣∣
v=v̂

since ∂ĥ/∂βk = {(∂h/∂βk) + (∂h/∂v)(∂v̂/∂βk)}|v=v̂ and (∂h/∂v)|v=v̂ = 0: see also Appendix 1 of Ha, Lee
and Song (2001), and ∂h/∂βk =

∑
i j(yi j −µi j)xi jk = (y−µ)T Xk with the kth column vector Xk of X, and

∂D̂
∂βk

= ZT Ŵ ′kZ,

where Ŵ ′k = diag[µ̂i j{Xk + Z(∂v̂/∂βk)}]. Note here that following Appendix C of Lee and Nelder
(1996), we also have

∂v̂
∂βk

= −

(
−∂2h
∂v2

)−1 (
−∂2h
∂v∂βk

) ∣∣∣∣∣∣
v=v̂

= −
(
ZT ŴZ + U

)−1 (
ZT ŴXk

)
.
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In this paper we use the Newton-Raphson to solve (3.5), with the following negative second deriva-
tives

−
∂2 pv(h)
∂βk∂βl

= −
∂2ĥ

∂βk∂βl
+

1
2

tr
(
−D̂−1 ∂D̂

∂βk
D̂−1 ∂D̂

∂βl
+

∂2D̂
∂βk∂βl

)
. (3.6)

Here

−
∂2ĥ

∂βk∂βl
= XT

k ŴXl − XT
k ŴZ

(
ZT ŴZ + U

)−1
ZT ŴXl

and

∂2D̂
∂βk∂βl

= ZT Ŵ ′′klZ,

where Ŵ ′′kl = diag[µ̂i j{Xk + Z(∂v̂/∂βk)}{Xl + Z(∂v̂/∂βl)} + {Z(∂2v̂/∂βk∂βl)}] with

∂2v̂
∂βk∂βl

= −
(
ZT ŴZ + U

)−1
ZT Ŵ ′k

{
Xl + Z

∂v̂
∂βl

}
.

3.2. Estimation of dispersion parameter

Similarly, the LA1 dispersion estimator for α is obtained by solving

∂pv(h)
∂α

= 0. (3.7)

Here

∂pv(h)
∂α

=
∂h
∂α

∣∣∣∣∣∣
v=v̂

−
1
2

tr
(
D̂−1 ∂D̂

∂α

)
,

where ∂h/∂α =
∑

i ∂`2/∂α =
∑

i{−1/(2α) + v2
i /(2α

2)}, and

∂D̂
∂α

= ZT
(
∂Ŵ
∂α

)
Z − α−2Iq,

where ∂Ŵ/∂α = diag{µ̂i jZ(∂v̂/∂α)} and ∂v̂/∂α = (ZT ŴZ)−1(α−2v̂).
To solve (3.7), as in previous section we also use the Newton-Raphson, with the negative second

derivative

−
∂2 pv(h)
∂α2 = −

∂2ĥ
∂α2 +

1
2

tr
(
−D̂−1 ∂D̂

∂α
D̂−1 ∂D̂

∂α
+
∂2D̂
∂α2

)
. (3.8)

Often pv(h) does not provide sufficiently accurate approximation to m when the cluster size ni are
small. If so, the second-order Laplace approximation is recommended (Shun, 1997; Lee and Nelder,
2001). As n∗ = min1≤i≤q ni → ∞ we again have

m = sv(h) + O
(
n∗−2

)
.
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Here

sv(h) = pv(h) −
F(h)
24

and

F(h) =

q∑
i=1

−3
∂4h
∂v4

i

 b2
ii − 5

∂3h
∂v3

i

2

b3
ii


∣∣∣∣∣∣
v=v̂

,

where bii is the ith diagonal element of D(h, v)−1; in model (2.1) bii =
∑

j µi j + α−1 and ∂3h/∂v3
i =

∂4h/∂v4
i = −

∑
j µi j. In this paper, we call the dispersion estimator of α maximizing sv(h), the second-

order Laplace approximation(LA2) estimator; it is also obtained by solving

∂sv(h)
∂α

= 0.

We have found that for the estimation of β, the use of pv(h) is enough because it performs well. Thus,
in this paper the LA2 method uses sv(h) for α, but pv(h), not sv(h), for β.

3.3. Variance estimation for parameter estimators

Following the usual ML inference, the asymptotic covariance matrix of β̂ and α̂ is obtained from the
inverse of information matrix, −∂2m/∂ψ2 with ψ = (β, α)T . However, the integration in m is again
intractable, so that we use the first-order approximation pv(h). Thus, in this paper the variances of ψ̂
are estimated from the main diagonal elements of inverse of H = −∂2 pv(h)/∂ψ2, given by

H =

(
H1 H2
HT

2 H3

)
. (3.9)

Here, H1 = −∂2 pv(h)/∂β2 with entries given in (3.6), H3 = −∂2 pv(h)/∂α2 is given in (3.8) and
H2 = −∂2 pv(h)/∂β∂α with its entries

−
∂2 pv(h)
∂βk∂α

= −
∂2ĥ
∂βk∂α

+
1
2

tr
(
−D̂−1 ∂D̂

∂βk
D̂−1 ∂D̂

∂α
+

∂2D̂
∂βk∂α

)
.

4. Illustration

The proposed method is illustrated using two examples and simulation studies. Here we focus on
comparisons of LA1 and LA2 estimators. For the further comparison, we also include the marginal
GHQ method using SAS NLMIXED procedure. For the model fitting and computation, we used
SAS/IML.

4.1. Examples

Example 1. (Pump failure data) Gaver and O’Muircheartaigh (1987) presented a small data set
about failures of 10 pumps. The number of failures and the period of operation were recorded for
each of 10 pumps. We fit the Poisson GLMM where the fixed effect is group effect, the offset is the
logarithm of the period of operation and the random effect is each pump. The results in Table 1 show
that for the fixed effects β0 and β1 the LA1 and LA2 estimates are about the same as GHQ estimates,
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Table 1: Results on the estimation of parameters for the pump failure data

Method β̂0 (SE) β̂1 (SE) α̂ (SE)
LA1 −2.047 (0.507) 1.687 (0.696) 0.901 (0.510)
LA2 −2.048 (0.510) 1.686 (0.700) 0.916 (0.524)
GHQ −2.048 (0.510) 1.689 (0.700) 0.914 (0.523)

Note: LA1, the first-order Laplace approximation; LA2, the second-order Laplace approximation; GHQ, the marginal
Gauss-Hermite quadrature method using SAS PROC NLMIXED; β0, intercept; β1, group effect; α, variance of
random effect; SE, the estimated standard error.

Table 2: Results on the estimation of parameters for the epileptics data (single covariate)

Method β̂0 (SE) β̂1 (SE) α̂ (SE)
LA1 1.772 (0.182) −0.294 (0.253) 0.877 (0.178)
LA2 1.772 (0.183) −0.294 (0.254) 0.880 (0.179)
GHQ 1.772 (0.183) −0.294 (0.254) 0.880 (0.179)

Note: β0, intercept; β1, new drug effect; α, variance of random effect.

Table 3: Results on the estimation of parameters for the epileptics data (two covariates)

Method β̂0 (SE) β̂1 (SE) β̂2 (SE) α̂ (SE)
LA1 2.867 (1.927) −0.311 (0.255) −0.327 (0.573) 0.874 (0.177)
LA2 2.867 (1.931) −0.312 (0.255) −0.327 (0.574) 0.877 (0.179)
GHQ 2.867 (1.931) −0.312 (0.255) −0.327 (0.574) 0.877 (0.178)

Note: β0, intercept; β1, new drug effect; β2, age effect; α, variance of random effect.

but that for the dispersion parameter α the LA2 estimate is very closer to the GHQ estimate. However,
the LA1 estimate for α is smaller than the corresponding LA2 and GHQ estimates.

Example 2. (Data on epileptics) This example is based on the longitudinal seizure count data
from a clinical trial which consists of four repeated measures of 59 epileptics, presented by Thall
and Vail (1990). For the data we perform two analyses. For the first analysis, we fit the Poisson
GLMM with a single covariate only, indicating a new drug (Trt = 1) or placebo (Trt = 0). In the
second analysis, we consider two covariates, the Trt and age. Other covariates are also available but
are omitted. The corresponding results are presented in Tables 2 and 3, respectively. Overall, the
trends of the results are similar to those evident in Table 1. However, the three methods lead to similar
estimates for both β and α. A possible reason is that the data set has a larger sample size n = 236 with
q = 59 and ni = 4.

4.2. Simulation studies

Simulated studies, based on 200 replications of simulated data, are presented to compare the LA1 and
LA2 methods. Data are generated from the Poisson GLMM (2.1) assuming fixed effects β = (β0, β1) =

(1,−1) and dispersion parameter (i.e. variance of normal random effect) α = 1. Here, we set a single
covariate xi j to be 0 for the first q/2 individuals (control group), and xi j to be 1 for the remaining
q/2 individuals (treatment group). We also set the sample size n =

∑q
i=1 ni = 40 and 200, which

correspond to q = 20 with ni = 2 and q = 50 with ni = 4, respectively. For the 200 replications we
computed the mean, standard deviation(SD), the mean(SEM) of the estimated standard errors(SEs)
for β̂ and α̂. Here, the SEs are obtained from (3.9).

The simulation results are summarized in Table 4. As expected from Section 4.1, three methods
give about the same results for the estimation of β, and LA2 method provides almost identical results
to the GHQ method, particular for a larger sample size n = 200. Overall, the LA2 method works well
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Table 4: Simulation results about the estimation of parameters using 200 replications under true fixed effects
β = (β0, β1) = (1,−1) and true variance of random effect α = 1

β̂0 β̂1 α̂
n Method Mean SD SEM Mean SD SEM Mean SD SEM

LA1 0.992 0.361 0.335 −0.942 0.483 0.497 0.902 0.479 0.420
40 LA2 0.989 0.363 0.339 −0.943 0.479 0.502 0.927 0.495 0.439

GHQ 0.990 0.362 0.338 −0.942 0.478 0.501 0.923 0.490 0.435
LA1 1.011 0.225 0.207 −1.014 0.311 0.303 0.952 0.268 0.244

200 LA2 1.010 0.225 0.208 −1.015 0.311 0.305 0.964 0.274 0.249
GHQ 1.010 0.225 0.208 −1.014 0.311 0.305 0.965 0.273 0.248

Note: Mean and SD, the mean and standard deviation for β̂ and α̂, respectively; SEM, the mean of estimated standard
errors for β̂ and α̂.

compared to the LA1 method. In particular, LA1 method gives more biases for α̂. In Table 4, for
ψ = (β, α)T the SD is the estimate of the true {var(ψ̂)}1/2 and SEM is the average of SE estimate for ψ̂.
The proposed SE estimates perform well as judged by the good agreement between SD and SEM as
sample size n increases.

5. Concluding Remarks

We have shown that the LA method is very useful for the ML estimation of parameters in Poisson
GLMMs where the marginal likelihood is directly not obtained. In particular, we have found that the
LA2 estimates are about the same as the resulting GHQ estimates from SAS NLMIXED procedure.
However, the LA1 method gives similar estimates to the LA2 method as sample size increases, but it
leads to more biases for α in a small sample. Thus, in this paper we recommend the use of the LA2
method for the model (2.1).

The proposed method can be straightforwardly extended to GLMMs (2.1) with binary or binom-
inal responses. Even though our method was developed for the model with one random-effect term,
extension to GLMMs with more than one random component will be possible because the proposed
method avoids intractable integrations. Furthermore, the development of the LA methods for semi-
parametric frailty models (Ha et al., 2001; Ha et al., 2007) would be also an interesting future work.
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