• Title/Summary/Keyword: Poisson cluster

Search Result 28, Processing Time 0.021 seconds

IEEE 802.15.4e TSCH-mode Scheduling in Wireless Communication Networks

  • Ines Hosni;Ourida Ben boubaker
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.156-165
    • /
    • 2023
  • IEEE 802.15.4e-TSCH is recognized as a wireless industrial sensor network standard used in IoT systems. To ensure both power savings and reliable communications, the TSCH standard uses techniques including channel hopping and bandwidth reserve. In TSCH mode, scheduling is crucial because it allows sensor nodes to select when data should be delivered or received. Because a wide range of applications may necessitate energy economy and transmission dependability, we present a distributed approach that uses a cluster tree topology to forecast scheduling requirements for the following slotframe, concentrating on the Poisson model. The proposed Optimized Minimal Scheduling Function (OMSF) is interested in the details of the scheduling time intervals, something that was not supported by the Minimal Scheduling Function (MSF) proposed by the 6TSCH group. Our contribution helps to deduce the number of cells needed in the following slotframe by reducing the number of negotiation operations between the pairs of nodes in each cluster to settle on a schedule. As a result, the cluster tree network's error rate, traffic load, latency, and queue size have all decreased.

Application of the Poisson Cluster Rainfall Generation Model to the Urban Flood Analysis (포아송 클러스터 강우 생성 모형을 이용한 도시 홍수 해석)

  • Park, Hyunjin;Yang, Jungsuk;Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.729-741
    • /
    • 2015
  • This study examined the applicability of MBLRP (Modified Bartlett-Lewis Rectangular Pulse) rainfall generation model for an urban flood simulation which is a type of Poisson cluster rainfall generation model. This study constructed XP-SWMM model for Namgajwa area of Hongjecheon basin, which is a two-dimensional pipe network-surface flood simulation program and computed a flood discharge and a flooded area with input data of synthetic rainfall time series of 200 years that were generated by the MBLRP model. This study compared the data of flood with synthetic rainfall and flood with corresponding values which were based on design rainfall. The results showed that the flooded area computed with MBLRP model was somewhat smaller than the corresponding values on the basis of the design. A degree of underestimation was from 8% (5 year) to 34% (200 year) and the degree of underestimation increased as a return period increased. This study is meaningful in that it proposes methodology that enables quantifiability of uncertain variables which are related to a flooding through Monte Carlo analysis of urban flooding simulation and applicability and limitations thereof.

On Nonparametric Estimation of Data Edges

  • Park, Byeong U.
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.265-280
    • /
    • 2001
  • Estimation of the edge of a distribution has many important applications. It is related to classification, cluster analysis, neural network, and statistical image recovering. The problem also arises in measuring production efficiency in economic systems. Three most promising nonparametric estimators in the existing literature are introduced. Their statistical properties are provided, some of which are new. Themes of future study are also discussed.

  • PDF

CENTRAL LIMIT THEOREM FOR ASSOCIATED RANDOM VARIABLE

  • Ru, Dae-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1994
  • In this paper we investigate an functional central limit theorem for a nonstatioary d-parameter array of associated random variables applying the crite-rion of the tightness condition in Bickel and Wichura[1971]. Our results imply an extension to the nonstatioary case of invariance principle of Burton and Kim(1988) and analogous results for the d-dimensional associated random measure. These re-sults are also applied to show a new functional central limit theorem for Poisson cluster random variables.

LIMIT THEOREM FOR ASSOCIATED RANDOM MEASURES

  • Ru, Dae-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.3 no.1
    • /
    • pp.89-100
    • /
    • 1996
  • In this paper we investigate a limit theorem for a non-statioary d-parameter array of associated random variables applying the criterion of the tightness condition in Donsker, M[1951]. Our re-sults imply an extension to the nonstatioary case of Convergence of Probability Measure of billingsley. P[1986]. and analogous results for the d-dimensional associated random measure. These results are also applied to show a new limit theorem for Poisson cluster random mea-sures.

Interference-Aware Channel Assignment Algorithm in D2D overlaying Cellular Networks

  • Zhao, Liqun;Wang, Hongpeng;Zhong, Xiaoxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1884-1903
    • /
    • 2019
  • Device-to-Device (D2D) communications can provide proximity based services in the future 5G cellular networks. It allows short range communication in a limited area with the advantages of power saving, high data rate and traffic offloading. However, D2D communications may reuse the licensed channels with cellular communications and potentially result in critical interferences to nearby devices. To control the interference and improve network throughput in overlaid D2D cellular networks, a novel channel assignment approach is proposed in this paper. First, we characterize the performance of devices by using Poisson point process model. Then, we convert the throughput maximization problem into an optimal spectrum allocation problem with signal to interference plus noise ratio constraints and solve it, i.e., assigning appropriate fractions of channels to cellular communications and D2D communications. In order to mitigate the interferences between D2D devices, a cluster-based multi-channel assignment algorithm is proposed. The algorithm first cluster D2D communications into clusters to reduce the problem scale. After that, a multi-channel assignment algorithm is proposed to mitigate critical interferences among nearby devices for each D2D cluster individually. The simulation analysis conforms that the proposed algorithm can greatly increase system throughput.

Evaluation of the Applicability of the Poisson Cluster Rainfall Generation Model for Modeling Extreme Hydrological Events (극한수문사상의 모의를 위한 포아송 클러스터 강우생성모형의 적용성 평가)

  • Kim, Dong-Kyun;Kwon, Hyun-Han;Hwang, Seok Hwan;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.773-784
    • /
    • 2014
  • This study evaluated the applicability of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) rainfall generation model for modeling extreme rainfalls and floods in Korean Peninsula. Firstly, using the ISPSO (Isolated Species Particle Swarm Optimization) method, the parameters of the MBLRP model were estimated at the 61 ASOS (Automatic Surface Observation System) rain gauges located across Korean Peninsula. Then, the synthetic rainfall time series with the length of 100 years were generated using the MBLRP model for each of the rain gauges. Finally, design rainfalls and design floods with various recurrence intervals were estimated based on the generated synthetic rainfall time series, which were compared to the values based on the observed rainfall time series. The results of the comparison indicate that the design rainfalls based on the synthetic rainfall time series were smaller than the ones based on the observation by 20% to 42%. The amount of underestimation increased with the increase of return period. In case of the design floods, the degree of underestimation was 31% to 50%, which increases along with the return period of flood and the curve number of basin.

The Application of the Poisson Cluster Rainfall Generation Model to the Flood Analysis (포아송 클러스터 강우생성 모형의 홍수 모의 적용성 평가)

  • Kim, Dongkyun;Shin, Ji Yae;Lee, Seung-Oh;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.439-447
    • /
    • 2013
  • The applicability of the parameter map of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) model for the Korean Peninsula was assessed from the perspective of flood prediction. The design rainfalls estimated from the MBLRP model were smaller than those from observed values by 5% to 40%, and the degree of underestimation of design rainfall increases with the increase of the recurrence interval of the design rainfall. The design floods at a virtual watershed estimated using the simulated rainfall time series based on MBLRP model were also smaller than those derived from the observed rainfall time series by 20% to 45%. The degree of underestimation of design flood increases with the increase of the recurrence interval of the design flood.

A Study of Efficiency Distributed routing path using LTD(Load Tolerance Density-distribution) in Mobile Ad-hoc Networks (모바일 애드 혹 네트워크에서 LTD(Load Tolerance Density-distribution)를 이용한 효율적인 분산경로에 관한 연구)

  • Oh, Dong-kuen;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.105-107
    • /
    • 2015
  • In this paper, we proposed LTD(Load Tolerance Density-distribution) algorithm using dynamic density for analyzing distribute routing path. MANET(Mobile Ad-hoc Networks) consists of the node that has a mobility. By the Mobility, the topology is exchanged frequently. To reduce the exchange of topology, the hierarchy network is studied. However, if the load is concentrated at the cluster head node, the communication is disconnected. the proposed algorithm measure the dynamic density of the node using poisson distribution. And this algorithm provides distribute routing path using dynamic density. The simulation results, the proposed algorithm shows improved packet delivery ratio than the compared algorithm.

  • PDF

Development and validation of poisson cluster stochastic rainfall generation web application across South Korea (포아송 클러스터 가상강우생성 웹 어플리케이션 개발 및 검증 - 우리나라에 대해서)

  • Han, Jaemoon;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.335-346
    • /
    • 2016
  • This study produced the parameter maps of the Modified Bartlett-Lewis Rectangular Pulse (MBLRP) stochastic rainfall generation model across South Korea and developed and validated the web application that automates the process of rainfall generation based on the produced parameter maps. To achieve this purpose, three deferent sets of parameters of the MBLRP model were estimated at 62 ground gage locations in South Korea depending on the distinct purpose of the synthetic rainfall time series to be used in hydrologic modeling (i.e. flood modeling, runoff modeling, and general purpose). The estimated parameters were spatially interpolated using the Ordinary Kriging method to produce the parameter maps across South Korea. Then, a web application has been developed to automate the process of synthetic rainfall generation based on the parameter maps. For validation, the synthetic rainfall time series has been created using the web application and then various rainfall statistics including mean, variance, autocorrelation, probability of zero rainfall, extreme rainfall, extreme flood, and runoff depth were calculated, then these values were compared to the ones based on the observed rainfall time series. The mean, variance, autocorrelation, and probability of zero rainfall of the synthetic rainfall were similar to the ones of the observed rainfall while the extreme rainfall and extreme flood value were smaller than the ones derived from the observed rainfall by the degree of 16%-40%. Lastly, the web application developed in this study automates the entire process of synthetic rainfall generation, so we expect the application to be used in a variety of hydrologic analysis needing rainfall data.