• Title/Summary/Keyword: Poisson Mixture Model

Search Result 31, Processing Time 0.028 seconds

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan;Ji, Haixu
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.267-280
    • /
    • 2021
  • The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

Impact of Heterogeneous Dispersion Parameter on the Expected Crash Frequency (이질적 과분산계수가 기대 교통사고건수 추정에 미치는 영향)

  • Shin, Kangwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5585-5593
    • /
    • 2014
  • This study tested the hypothesis that the significance of the heterogeneous dispersion parameter in safety performance function (SPF) used to estimate the expected crashes is affected by the endogenous heterogeneous prior distributions, and analyzed the impacts of the mis-specified dispersion parameter on the evaluation results for traffic safety countermeasures. In particular, this study simulated the Poisson means based on the heterogeneous dispersion parameters and estimated the SPFs using both the negative binomial (NB) model and the heterogeneous negative binomial (HNB) model for analyzing the impacts of the model mis-specification on the mean and dispersion functions in SPF. In addition, this study analyzed the characteristics of errors in the crash reduction factors (CRFs) obtained when the two models are used to estimate the posterior means and variances, which are essentially estimated through the estimated hyper-parameters in the heterogeneous prior distributions. The simulation study results showed that a mis-estimation on the heterogeneous dispersion parameters through the NB model does not affect the coefficient of the mean functions, but the variances of the prior distribution are seriously mis-estimated when the NB model is used to develop SPFs without considering the heterogeneity in dispersion. Consequently, when the NB model is used erroneously to estimate the prior distributions with heterogeneous dispersion parameters, the mis-estimated posterior mean can produce large errors in CRFs up to 120%.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza;Najaafi, Neda;Habibi, Mostafa;Ebrahimi, Farzad;Safarpour, Hamed
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.469-480
    • /
    • 2020
  • This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad;Daikh, Ahmed Amine;Melaibari, Ammar;Wagih, Ahmed;Othman, Ramzi;Almitani, Khalid H;Hamed, Mostafa A.;Abdelrahman, Alaa;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.639-660
    • /
    • 2022
  • The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.

Exploring Factors Related to Metastasis Free Survival in Breast Cancer Patients Using Bayesian Cure Models

  • Jafari-Koshki, Tohid;Mansourian, Marjan;Mokarian, Fariborz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9673-9678
    • /
    • 2014
  • Background: Breast cancer is a fatal disease and the most frequently diagnosed cancer in women with an increasing pattern worldwide. The burden is mostly attributed to metastatic cancers that occur in one-third of patients and the treatments are palliative. It is of great interest to determine factors affecting time from cancer diagnosis to secondary metastasis. Materials and Methods: Cure rate models assume a Poisson distribution for the number of unobservable metastatic-component cells that are completely deleted from the non-metastasis patient body but some may remain and result in metastasis. Time to metastasis is defined as a function of the number of these cells and the time for each cell to develop a detectable sign of metastasis. Covariates are introduced to the model via the rate of metastatic-component cells. We used non-mixture cure rate models with Weibull and log-logistic distributions in a Bayesian setting to assess the relationship between metastasis free survival and covariates. Results: The median of metastasis free survival was 76.9 months. Various models showed that from covariates in the study, lymph node involvement ratio and being progesterone receptor positive were significant, with an adverse and a beneficial effect on metastasis free survival, respectively. The estimated fraction of patients cured from metastasis was almost 48%. The Weibull model had a slightly better performance than log-logistic. Conclusions: Cure rate models are popular in survival studies and outperform other models under certain conditions. We explored the prognostic factors of metastatic breast cancer from a different viewpoint. In this study, metastasis sites were analyzed all together. Conducting similar studies in a larger sample of cancer patients as well as evaluating the prognostic value of covariates in metastasis to each site separately are recommended.

Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates

  • Esmaeilzadeh, Mostafa;Golmakani, Mohammad Esmaeil;Kadkhodayan, Mehran;Amoozgar, Mohammadreza;Bodaghi, Mahdi
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.151-163
    • /
    • 2021
  • The main target of this study is to investigate nonlinear transient responses of moving polymer nano-size plates fortified by means of Graphene Platelets (GPLs) and resting on a Winkler-Pasternak foundation under a transverse pressure force and a temperature variation. Two graphene spreading forms dispersed through the plate thickness are studied, and the Halpin-Tsai micro-mechanics model is used to obtain the effective Young's modulus. Furthermore, the rule of mixture is employed to calculate the effective mass density and Poisson's ratio. In accordance with the first order shear deformation and von Karman theory for nonlinear systems, the kinematic equations are derived, and then nonlocal strain gradient scheme is used to reflect the effects of nonlocal and strain gradient parameters on small-size objects. Afterwards, a combined approach, kinetic dynamic relaxation method accompanied by Newmark technique, is hired for solving the time-varying equation sets, and Fortran program is developed to generate the numerical results. The accuracy of the current model is verified by comparative studies with available results in the literature. Finally, a parametric study is carried out to explore the effects of GPL's weight fractions and dispersion patterns, edge conditions, softening and hardening factors, the temperature change, the velocity of moving nanoplate and elastic foundation stiffness on the dynamic response of the structure. The result illustrates that the effects of nonlocality and strain gradient parameters are more remarkable in the higher magnitudes of the nanoplate speed.

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Analysis of Pull-out Behavior of Tunnel-type Anchorage for Suspended Bridge Using 2-D Model Tests and Numerical Analysis (2차원 모형실험 및 수치해석을 통한 현수교 터널식 앵커리지의 인발거동 특성 분석)

  • Seo, Seunghwan;Park, Jaehyun;Lee, Sungjune;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.61-74
    • /
    • 2018
  • In this study, the pull-out behavior of tunnel type anchorage of suspension bridges was analyzed based on results from laboratory size model tests and numerical analysis. Tunnel type anchorage has found its applications occasionally in both domestic and oversea projects, therefore design method including failure mode and safety factor is yet to be clearly established. In an attempt to improve the design method, scaled model tests were conducted by employing simplified shapes and structure of the Ulsan grand bridge's anchorage which was the first case history of its like in Korea. In the model tests, the anchorage body and the surrounding rocks were made by using gypsum mixture. The pull-out behavior was investigated under plane strain conditions. The results of the model tests showed that the tunnel type anchorage underwent wedge shape failure. For the verification of the model tests, numerical analysis was carried out using ABAQUS, a finite element analysis program. The failure behavior predicted by numerical analysis was consistent with that by the model tests. The result of numerical analysis also showed that the effect of Poisson's ratio was negligible, and that a plugging type failure mode could occur only when the strength of the surrounding rocks was 10 times larger than that of anchorage body.

Comparative Study on the Estimation Methods of Traffic Crashes: Empirical Bayes Estimate vs. Observed Crash (교통사고 추정방법 비교 연구: 경험적 베이즈 추정치 vs. 관측교통사고건수)

  • Shin, Kangwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.453-459
    • /
    • 2010
  • In the study of traffic safety, it is utmost important to obtain more reliable estimates of the expected crashes for a site (or a segment). The observed crashes have been mainly used as the estimate of the expected crashes in Korea, while the empirical Bayes (EB) estimates based on the Poisson-gamma mixture model have been used in the USA and several European countries. Although numerous studies have used the EB method for estimating the expected crashes and/or the effectiveness of the safety countermeasures, no past studies examine the difference in the estimation errors between the two estimates. Thus, this study compares the estimation errors of the two estimates using a Monte Carlo simulation study. By analyzing the crash dataset at 3,000,000 simulated sites, this study reveals that the estimation errors of the EB estimates are always less than those of the observed crashes. Hence, it is imperative to incorporate the EB method into the traffic safety research guideline in Korea. However, the results show that the differences in the estimation errors between the two estimates decrease as the uncertainty of the prior distribution increases. Consequently, it is recommended that the EB method be used with reliable hyper-parameter estimates after conducting a comprehensive examination on the estimated negative binomial model.