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Introduction

Cancer is one of the most important life-threatening 
diseases worldwide and is considered as the first and 
second leading cause of death in developed and developing 
countries, respectively (Jemal et al., 2011). Among all 
cancer sites, breast cancer is the most frequently diagnosed 
cancer with 23% out of the total new cancer cases and 14% 
of the total cancer deaths in females in 2008, globally. It 
is the most common cancer in western countries and the 
second most common cause of cancer death in US women 
(Foster et al., 2011). Similar status is present in western 
Asia; breast cancer comprises 27.2% of all new cancer 
cases and 19% of all deaths due to cancer in females and 
it is the first site and cause of death among all types of 
cancer in 2008 (American Cancer Society, 2011).

Breast cancer has increasing trend of incidence 
especially in countries with a low rate of incidence 
(Montazeri et al., 2008). Among Iranian women this 
trend was increasing from 1965 to 2000, changing the 
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Abstract

 Background: Breast cancer is a fatal disease and the most frequently diagnosed cancer in women with an 
increasing pattern worldwide. The burden is mostly attributed to metastatic cancers that occur in one-third of 
patients and the treatments are palliative. It is of great interest to determine factors affecting time from cancer 
diagnosis to secondary metastasis. Materials and Methods: Cure rate models assume a Poisson distribution for the 
number of unobservable metastatic-component cells that are completely deleted from the non-metastasis patient 
body but some may remain and result in metastasis. Time to metastasis is defined as a function of the number 
of these cells and the time for each cell to develop a detectable sign of metastasis. Covariates are introduced to 
the model via the rate of metastatic-component cells. We used non-mixture cure rate models with Weibull and 
log-logistic distributions in a Bayesian setting to assess the relationship between metastasis free survival and 
covariates. Results: The median of metastasis free survival was 76.9 months. Various models showed that from 
covariates in the study, lymph node involvement ratio and being progesterone receptor positive were significant, 
with an adverse and a beneficial effect on metastasis free survival, respectively. The estimated fraction of patients 
cured from metastasis was almost 48%. The Weibull model had a slightly better performance than log-logistic. 
Conclusions: Cure rate models are popular in survival studies and outperform other models under certain 
conditions. We explored the prognostic factors of metastatic breast cancer from a different viewpoint. In this 
study, metastasis sites were analyzed all together. Conducting similar studies in a larger sample of cancer patients 
as well as evaluating the prognostic value of covariates in metastasis to each site separately are recommended. 
Keywords: Breast cancer - metastasis - survival - cure model - Bayesian

RESEARCH ARTICLE

Exploring Factors Related to Metastasis Free Survival in Breast 
Cancer Patients Using Bayesian Cure Models
Tohid Jafari-Koshki1,2, Marjan Mansourian2,3, Fariborz Mokarian4

rank of incidence from the second to the first diagnosed 
cancer during these years, and it is currently the fifth most 
common cause of cancer death in women (Lamyian et 
al., 2007; Mousavi et al., 2007; 2009; Babu et al., 2011; 
Noroozi et al., 2011; Taghavi et al., 2012).

Metastatic also known as secondary or advanced breast 
cancer occurs when breast cancer cells spread from the 
primary tumor in the breast through the lymphatic or blood 
system to other parts of the body. Breast cancer spreads to 
a variety of organs depending on the type of breast cancer 
(Senkus et al., 2013). These affected sites include bone, 
lung, liver, brain, skin, and other organs (Weigelt et al., 
2005). Due to poor survival and the low quality of life 
for the patients with secondary breast metastasis, it is of 
interest to define relevant prognostic factors to help the 
surgeons and clinicians in disease management. Several 
studies have used different statistical methods to determine 
the prognostic factors of secondary breast metastasis. 
According to the literature, estrogen receptor (ER), 
progesterone receptor (PR), lymph node involvement ratio 
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(LNR), cathepsin-D (Cath-D), tumor protein 53 (p53) , 
human epidermal growth factor receptor type 2 (Her2 
also known as ERBB2 or HER-2/neu), tumor size, age 
at diagnosis, chemotherapy, and axillary nodal status at 
the time of diagnosis of the primary tumor are the most 
important prognostic factors with different impact on 
progression and metastases of breast cancer to various 
organs (Rochefort et al., 1990; Veronesi et al., 1993; 
Garcia et al., 1996; Inoue et al., 1998; Balleine et al., 
1999; Rochefort and Liaudent-coopman, 1999; Selzner 
et al., 2000; Evans et al., 2004; Colleoni et al., 2005; 
Truong et al., 2005; Voogd et al., 2005; Weigelt et al., 
2005; Palmieria et al., 2006, 2007; Altundag et al., 2007; 
Sezgin et al., 2007; Wadasadawala et al., 2007; Gao et 
al., 2009; Koizumi et al., 2010; Ruiterkamp et al., 2011; 
Senkus et al., 2013).

Globally, one-third of patients diagnosed with primary 
breast cancer will continue to develop metastatic breast 
cancer (Mayer et al., 2010). 3-10% of patients have 
distant metastases and, in general, there is no cure for 
these patients and all treatments are palliative in nature 
(Ruiterkamp et al., 2011). These rates are higher for 
developing countries where the first diagnosis is at later 
stages. Half a million deaths each year are attributable to 
metastatic breast cancer, and the median survival time 
from diagnosis of secondary disease is approximately 3 
years (Johnston, 2010). Time to metastasis from breast 
to other sites is short with poor prognosis (Eichler et al., 
2008; Oltean et al., 2009; Ruiterkamp et al., 2011). Due 
to high burden of secondary metastases of breast, new 
prognostic markers are urgently needed to identify patients 
who are at the highest risk for developing metastases, 
which might enable oncologists to begin individualized 
treatments (Weigelt et al., 2005; Foster et al., 2011).

When the outcome of interest is the time to an event, 
such as time for primary breast cancer to secondary 
metastasis, survival analysis plays a crucial role in the 
modeling of the process and finding potential factors 
important in duration between occurrences of initiating 
and terminating events. Survival analysis is one of the 
most appealing techniques used in modeling time to 
metastasis in breast cancer. 

Due to flexibility in allowing for censoring, Cox 
proportional hazards model and parametric survival 
models have received a great attention in the study of time 
to an event such as metastasis in the literature amongst 
the other methods such as life tables and log-rank test 
(Veronesi et al., 1993; Andre et al., 2004; Voogd et al., 
2005; Eichler et al., 2008; Largillier et al., 2008). These 
models suppose that all individuals who enter the study 
are at risk and capable of experiencing the event until they 
achieve it or are censored. This assumption does not hold 
for some diseases such as cancer, however. In such cases, 
it is more rational to consider a situation in which some 
patients will be cured by initial therapy and treatments and 
are not any more at risk of events following primary cancer 
such as recurrence, metastasis, or death due to cancer. In 
such cases, cure models that allow for this possibility are 
popular and widely used.

Sposto (2002) used cure models to study data from 
children’s cancer group. Cure models have been widely 

used in the literature. Santen et al. (2008) used Bayesian 
cure models to overcome the problem of lack of statistical 
sensitivity to detect actually significant efficacy of 
antidepressant drugs. Basu and Tiwari used cure models 
in conjunction with competing risks models to study 
breast cancer data (Basu and Tiwari, 2010). Rama et al. 
(2010) compared performance of various cure models in 
breast cancer data.

Studies with a long term of follow up and a plateau 
in their Kaplan-Meier (K-M) curves are suitable for cure 
rate models, as this long tail indicates that a proportion of 
population has a long survivorship that may correspond to 
cured individuals. This situation is common in oncology 
studies and Othus et al. (2012) discuss the preference of 
cure models over Cox model for analyzing such data (Yin 
and Ibrahim, 2005; Othus et al., 2012b).

No one can be cured of death, therefore term “long 
survivors” is sometimes used instead of “cured patients” as 
this long survivorship causes a K-M curve with a plateau 
tail (Othus et al., 2012a).

Since metastatic breast cancer is considered to be 
incurable, exploring the factors associated with the long 
term from primary to metastatic breast cancer would be 
of great value for clinicians and oncology researchers. 
Most breast cancer studies have focused on the prognostic 
factors of survival from diagnosis or metastasis time to 
death (Yamasaki et al., 1992; Selzner et al., 2000; Nieder 
et al., 2008; Morris et al., 2012; Minisini et al., 2013). Risk 
factors of metastasis are routinely determined by using 
log-rank test or stratified analysis and survival analysis 
is used for modeling the overall survivorship. However, 
studies that approach the problem in a survival analytic 
framework are not frequent.

To overcome the drawbacks of Cox and parametric 
survival models, a plausible situation in present study, 
and to settle issues related to small sample size relative 
to complexity of the model, we used non-mixture cure 
models via Bayesian approach to assess the prognostic 
factors of metastasis free survival of primary breast cancer 
patients registered in a 12-year cohort. 

Materials and Methods

Patients
 In this study we used a 12-year cohort registry database 
on 1085 women diagnosed with breast cancer in Isfahan 
Sayed-o-Shohada research center. History of therapy 
and clinical conditions of patients was recorded until 
death or lost to follow up. Demographic variables and 
tumor characteristics have been recorded by interview 
and reported pathology results. Time to metastasis was 
based on the physicians’ opinion. From potential risk 
factors of metastasis, we used information available 
on variables: age at diagnosis of breast cancer, primary 
tumor size, lymph node involvement ratio (LNR) defined 
as ratio of positive to dissected lymph nodes, and binary 
covariates of being estrogen receptor positive (ER+), being 
progesterone receptor positive (PR+), being epidermal 
growth factor receptor-2 positive (Her2+), and being 
cathepsin-D positive (Cath-D+) patient.
 88 subjects were excluded from analysis because of 
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primary metastasis, a metastasis diagnosed at the time of 
register. After exclusion of 752 incomplete observations 
from 997 records, there were 245 breast cancer patients 
left in the study.

Methods
 Mixture and non-mixture models are two major 
approaches used in cure rate models. Mixture cure models, 
so- called standard cure rate models, treat the population 
of patients as a mixture of cured and non-cured groups. 
Thus the model is defined in two stages. The first models 
the probability of belonging to each group and the second 
models the survival in uncured patients: 
  S(1)

pop=p+(1-p)S* (t)

 Where S(1)
pop is the survivor function for entire 

population and S* is the survivor function for uncured 
group and p is the cured fraction that could be linked 
to covariates, c. Here, various links are possible for p 
such as popular link logit and S* can take a variety of 
survival distribution. Even though this model is intuitively 
appealing and widely used, violation of desirable structure 
of proportional hazards and improper posteriors are major 
drawbacks of these models (Ibrahim et al., 2001).
 Chen et al. (1999) proposed non-mixture models that 
approach the problem in a very different way and have a 
clinical justification. This model, also called parametric 
cure rate models, assumes a number of metastasis-
component tumor cells for each cancerous patient. After 
initial treatments, these cells are completely deleted in 
cured patients. However, some of these cells are left in the 
body of the other patients and by passing the time cause 
the metastasis in these patients of uncured group (Ibrahim 
et al., 2001). It is obvious that metastasis free survival is 
affected by both the number of left over cells and their 
activity. In this setting, metastasis free survival of a patient 
is determined in terms of the time to detecting the first 
sign of metastasis produced by metastasis-component 
tumor cells. The number of cells, N, is assumed to follow 
a Poisson distribution with mean q. Conditional on N, 
by assuming a distribution F for latent variable z of time 
to promotion of a metastasis-component cell, survival 
function can be written as
  S(2)

pop(t)= e-qF(t).
 Various forms of F can be used to model the time from 
entering study to detecting metastasis.
 It can be shown that following relationship exists 
between  S(1)

pop and S(2)
pop.

  S(2)
pop(t)= e-q(1-e-q)S(1)

pop (t).

 Hence, non-mixture model has a form of mixture ones. 
There is a major difference between these approaches, 
however. When covariates c are introduced to models via 
q, proportionality holds for non-mixture model of S(2) 

pop 

only (Ibrahim et al., 2001). Unlike non-mixture models, 
odds ratio (OR), rather than hazard ratio (HR), is used in 
mixture models to assess the impact of a covariate on cure 
fractions. In both cases, impact of a covariate on survival 
is assessed in HR scale (Othus et al., 2012a). The cured 
fraction of the population is obtained by e-q, where q is 
regressed on covariates and hence reflects their overall 

estimated impact on this fraction.
 There is another possibility in non-mixture models 
where mean of latent Poisson process q is regressed on 
covariates of each individual via a link such as q=exp(c'b). 
In this framework, there is an opportunity to assess two 
different types of covariate impact on survival and being 
cured (Ibrahim et al., 2001). In this format, a covariate 
can be assessed in terms of being effective or not both 
in survival and being cured. However, a statistical issue 
of identifiability may be questionable in these models 
as susceptibility responses of metastatic-component cell 
counts are unobservable themselves (Congdon, 2010).
 In this study, we used both standard parametric survival 
models and non-mixture cure rate model with two widely 
used and flexible distributions of log-logistic (k, l) and  
Weibull (k, l) in a Bayesian setting to model the time 
from diagnosis of breast cancer to onset of metastasis 
symptoms. In both cases, l is regressed on covariates as 
l=exp(c’b) wher e positive values of each b indicates 
larger hazad rates and adverse effect on survival for larger 
values of corresponding covariate. k is the shape parameter 
and not considered to be dependent on covariates. Credible 
Interval (CrI) is a Bayesian equivalent to ordinary 
confidence interval and was used for hypothesis tests 
about parameters.
 Also we compared the results by alternative frailty 
models (Congdon, 2010). These models allow for 
unobservable or unmeasured individual specific 
characteristics that may influence the survival function 
and cure fraction. The results were compared using 
deviance information criterion (DIC), a smaller value of 
which indicates better fit and performance.
 Before running the models, we scaled the metastasis 
free survival time to be in years. Also we standardized 
tumor size and age at diagnosis to avoid convergence 
problems. We let N(0, 100) priors for regression 
coefficients b and Gamma (1, 0.01) for priors of both k and 
q. All Bayesian models were implemented in open-access 
software OpenBUGS 3.2.2 (Lunn et al., 2009). DIC, 
descriptive statistics, and test results were obtained using 
free software R available on CRAN at www.r-project.org. 
Test results were considered to be significant at 5% level.

Results 

Out of 245 patients, 62 (25.3%) cases have experienced 
metastasis during 12 years of follow up and the remaining 
was censored. The mean age at diagnosis was 46.90 
(95%CI: 45.62-48.24; Range: 25.76-79.76). The median 
of metastasis free survival for all patients was 76.86 
(95%CI: 74.30-79.53) with range of 0.43-124.53 months 
and 73.9% of 5-year metastasis free survival rate.

Based on chi-square test results, proportions of 
ER+, Her2+, and Cat-D+ patients were not different in 
metastasis and metastasis free patients (pvalue>0.05). But 
there was a mild relationship between PR+ and metastasis 
(pvalue=0.055). Also, the age mean was not different for 
two groups.

Kaplan-Meier survival curve levels off within the 
study period and has plateau at its tail as shown in figure 
1 and justifies the relevance of cure models. This figure 
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suggests that the period of follow up is adequate to apply 
cure models (Yu et al., 2013).

Table 1 shows the posterior estimates and related 95% 
CrI for standard log-logistic and Weibull models. 

Since credible intervals for LNR and PR+ do not 
include zero, it can be inferred that these covariates are 
significant in both models. The other covariates do not 
have significant effects on metastasis free survival. DIC 
is smaller for log-logistic model that indicates it has fit 
the data better than Weibull. Even though the coefficients 
of both LNR and PR+ for this model are greater than that 
of Weibull, no changes are present in the significance of 
the covariates. 

LNR has direct and PR+ has reverse effect on hazard 
rate. That is lymph node involvement and being PR+ 
breast cancer have adverse and beneficial effects on long 
term of metastasis free survival, respectively.

Table 2 summarizes the results for cure models. 
Both models again suggest adverse effect of lymph 

node involvement on metastasis free survival. Effect of 
being PR+ is near significant. Posterior probability (PP), 
a p-value counterpart in Bayesian analysis, was 0.97 for 
this coefficient. PP values greater than 0.90 is considered 
to be significant and it can be inferred that PR+ status is 
positively related to longer metastasis free survival.

Cured fraction in current study implies a proportion 
of patients who have escaped from metastasis of breast 
cancer to other their organs and are expected to have a 
longer life and of higher quality. This fraction is estimated 
to be exp (-0.72)=0.48 and exp (-0.70)=0.49 for log-

logistic and Weibull models, respectively.
Cure model with Weibull distribution has the smallest 

DIC and fits the data best. All CrI’s are narrower for this 
model than those of log-logistic. However, this model has 
no additional significant covariate.

We repeated the aforementioned non-mixture models 
and this time let the parameter  be regressed on the 
covariates. This will enable us to reach a proportional 
hazard structure and explain the impact of the covariates in 
terms of hazard ratios. But this model did not converge due 
to small sample size relative to complexity of the model. 
Also we tried both models in the frailty framework and 
let  to depend on unobserved individual specific covariates 
by adding a normally distributed N(0s2) noise term to c 
b. The result is shown in table 3.

The results are essentially same as previous models. 
Small estimated value of s2 suggests that adding the noise 
term was not successful in improving the model and no 
significant changes were present.

Discussion

Our results are in accord with previous studies. Balleine 
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Figure 1. Kaplan-Meier Curve of Metastasis Free 
Survival and 95% Confidence Interval

Table 1. Posterior Estimates of the Parameters and Fit 
of Standard Models
 Log-logistic  Weibull
 Estimate 95% CrI Estimate 95% CrI

Intercept -2.91 (-4.2,-1.7)* -2.8 (-3.87, -1.8)*
Age at diagnosis -0.13 (-0.43, 0.17) -0.12 (-0.39, 0.13)
Tumor Size 0.15 (-0.14, 0.46) 0.09 (-0.14, 0.31)
LNR 1.72 (0.87, 2.58)* 1.2 (0.63, 1.9)*
PR+ -0.8 (-1.5, -0.06)* -0.64 (-1.2, -0.03)*
ER+ 0.41 (-0.29, 1.1) 0.37 (-0.25, 0.96)
Her2+ 0.16 (-0.46, 0.82) 0.11 (-0.45, 0.69)
Cath-D+ -0.48 (-0.43, 0.17) -0.45 (-1.3, 0.53)
k 0.88 (0.68, 1.0) 0.78 (0.61, 0.98)
DIC 1277.34  1310
pD 784.74  821.3

*significant at 95% level; LNR: lymph node involvement ratio; PR+: being 
progesterone receptor positive breast cancer patient; ER+: being estrogen receptor 
positive breast cancer patient; Her2+: being epidermal growth factor receptor-2 
positive breast cancer patient; Cath-D+: being Cathepsin-D positive breast cancer 

Table 2. Posterior Estimates of the Parameters of 
Cure Models
 Log-logistic  Weibull
 Estimate 95% CrI Estimate 95% CrI

Intercept -3.6 (0.01, -3.6) -3.3 (0.01, -1.9)
Age at diagnosis -0.19 (-0.59, 0.19) -0.13 (-0.46, 0.18)
Tumor Size 0.27 (-0.20, 0.77) 0.22 (-0.15, 0.60)
LNR 3.1 (1.7, 4.6)* 2.4 (1.4, 3.4)*
PR+ -0.8 (-1.8, 0.22) -0.85 (-1.7, 0.05)
ER+ 0.45 (-0.53, 1.4) 0.47 (-0.37, 1.3)
Her2+ 0.4 (-0.48, 1.2) 0.44 (-0.32, 1.2)
Cath-D+ -0.17 (-1.5, 1.2) -0.25 (-1.2, 0.88)
k 1.3 (0.95, 1.7) 1.1 (0.84, 1.3)
θ 0.72 (0.43, 1.2) 0.7 (0.43, 1.1)
DIC 1252.5  1208.5
pD 767.7  724.2

*significant at 95% level; LNR: lymph node involvement ratio; PR+: being 
progesterone receptor positive breast cancer patient; ER+: being estrogen receptor 
positive breast cancer patient; Her2+: being epidermal growth factor receptor-2 
positive breast cancer patient; Cath-D+: being Cathepsin-D positive breast cancer 

Table 3. Posterior Estimates of the Parameters and Fit 
of Frailty Models
 Log-logistic  Weibull
 Estimate 95% CrI Estimate 95% CrI

Intercept -3.6 (-5.4, -1.9) -3.3 (-4.7, -1.9)
Age at diagnosis -0.19 (-0.59, 0.19) -0.14 (-0.46, 0.17)
Tumor Size 0.26 (-0.19, 0.75) 0.22 (-0.14, 0.60)
LNR 3.1 (1.7, 4.6)* 2.4 (1.4, 3.4)*
PR+ -0.81 (-1.8, 0.21) -0.85 (-1.7, 0.04)
ER+ 0.45 (-0.56, 1.4) 0.47 (-0.37, 1.3)
Her2+ 0.4 (-0.49, 1.3) 0.45 (-0.31, 1.2)
Cath-D+ -0.19 (-1.4, 1.1) -0.25 (-1.2, 0.88)
k 1.3 (0.95, 1.7) 1.1 (0.85, 1.3)
θ 0.74 (0.44, 1.2) 0.67 (0.43, 1.0)
σ2 0.00018   0.00018 

*significant at 95% level; LNR: lymph node involvement ratio; PR+: being 
progesterone receptor positive breast cancer patient; ER+: being estrogen receptor 
positive breast cancer patient; Her2+: being epidermal growth factor receptor-2  
positive breast cancer patient; Cath-D+: being Cathepsin-D positive breast cancer 
patient; κ: shape parameter



Asian Pacific Journal of Cancer Prevention, Vol 15, 2014 9677

DOI:http://dx.doi.org/10.7314/APJCP.2014.15.22.9673
Exploring Factors Related to Metastasis Free Survival in Breast Cancer Patients Using Bayesian Cure Models

et al. (1999) reported that the absence of PR expression 
in primary breast cancer is associated with disease 
progression and metastasis to other sites. Koscielny et al. 
(1984) found a direct and indirect relationship between 
lymph node involvement and metastatic dissemination 
probability of breast cancer via the primary tumor size. 
Carter et al. reported that lymph node status serves as 
an indicator of the tumor’s ability to spread (Carter et 
al., 1989). There is a common belief that lymph node 
involvement is the best marker to recognize metastatic 
potential of breast cancer as the 5-year survival rate 
decreases by approximately 40% in the presence of lymph 
node involvement (van der Wal et al., 2002; Weigelt et al., 
2005). The cut off value of 25% for this factor has been 
reported to be a useful in determining high risk groups of 
patients (Truong et al., 2005). The results provide a guide 
for clinicians in the prognosis and assessing progression of 
the disease. The larger the proportion of dissected lymph 
nodes is involved, the shorter metastasis free survival is 
expected. Also a patient of PR+ at the time of diagnosis is 
expected to have a longer time to experience a metastasis 
and therefore is expected to have a higher chance of longer 
and healthier life.

Cure models are extensively used in survival analysis 
and various models and approaches have been applied in 
this framework. It has been shown that performance these 
models is as well as Cox and parametric survival models 
and is better under certain conditions (Sposto, 2002; Yu 
et al., 2013). These models are appropriate for studies 
with adequate follow up term and especially in cases that 
proportional hazards (PH) assumption is not met. Even 
being sound, these models are not recommended when 
survival is relatively poor or relatively good (Yu et al., 
2013). In these cases, assumed survival distributions such 
as Weibull fail to capture survival shape appropriately and 
fit poorly or do not converge.

K-M curve levels off approximately before 75% of 
the study period is passed. Hence adequacy of follow up 
term necessary for metastasis is settled. Supremum tests 
revealed that proportional hazards assumption does not 
hold for lymph node involvement ratio (p-values=0.03). 
Also, metastasis free survival of patients in the study was 
not shifted to any side. These considerations make cure 
models suitable for the analyzing these data.

Large sample size is a desirable property for 
cure models and can reduce the problems related to 
convergence and fit of the model. Despite rather small 
sample size, current study approaches analysis of 
metastasis free survival from a more realistic perspective 
and conducting studies in larger populations as well as 
exploring prognostic value of covariates in metastasis to 
each site separately is recommended.
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