• Title/Summary/Keyword: Poisson Distribution

Search Result 589, Processing Time 0.028 seconds

Simulation Input Modeling : Sample Size Determination for Parameter Estimation of Probability Distributions (시뮬레이션 입력 모형화 : 확률분포 모수 추정을 위한 표본크기 결정)

  • Park Sung-Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.15-24
    • /
    • 2006
  • In simulation input modeling, it is important to identify a probability distribution to represent the input process of interest. In this paper, an appropriate sample size is determined for parameter estimation associated with some typical probability distributions frequently encountered in simulation input modeling. For this purpose, a statistical measure is proposed to evaluate the effect of sample size on the precision as well as the accuracy related to the parameter estimation, square rooted mean square error to parameter ratio. Based on this evaluation measure, this sample size effect can be not only analyzed dimensionlessly against parameter's unit but also scaled regardless of parameter's magnitude. In the Monte Carlo simulation experiments, three continuous and one discrete probability distributions are investigated such as ; 1) exponential ; 2) gamma ; 3) normal ; and 4) poisson. The parameter's magnitudes tested are designed in order to represent distinct skewness respectively. Results show that ; 1) the evaluation measure drastically improves until the sample size approaches around 200 ; 2) up to the sample size about 400, the improvement continues but becomes ineffective ; and 3) plots of the evaluation measure have a similar plateau pattern beyond the sample size of 400. A case study with real datasets presents for verifying the experimental results.

The Stress Distribution in a Flat Plate with a Reinforced Circular Hole under Biaxial Loading (보강(補强)된 원형(圓形)구멍을 가진 평판(平板)의 이축하중하(二軸荷重下)에서의 응력분포(應力分布))

  • S.J.,Yim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.1
    • /
    • pp.53-66
    • /
    • 1971
  • The effect of reinforced circular hole in a flat plate under general biaxial loading conditions is considered. The reinforcement is achieved by attaching a circular ring of uniform rectangular cross section along the boundary of the hole. This investigation includes a theoretical solution and an experimental conformation. In the theoretical analysis, Gurney's method is used to obtain a solution for the stress distribution and the solution is expressed in a general form, so that it can be applicable to the case of general biaxial loading and general values of Poisson's ratios. In the experimental work a systematic series of photoelastic models, as shown in Fig.5 and Table 1, were analyzed on polariscope. The experimental results were in good agreement with the theoretical ones, as shown in Fig.8 and 9. The conclusions derived are as follows: 1) The theoretical results, given in Eq. $(1){\sim}(5)$, are sufficient in accuracy for the engineering design purpose. 2) The stress concentration factor decreases as the ratio n increases, but not significant beyond n=3. 3) The stress concentration factor increase as the ratio m increases, but not significant below m=0.7.

  • PDF

A Coordinator-based RFID Protocol to Avoid Reader Collision (코디네이터 기반 RFID 리더 충돌 회피 프로토콜)

  • Yang, Hoon-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.321-328
    • /
    • 2010
  • This paper presents a coordinator-based TDMA reader protocol that can avoid the reader collision in a passive RFID system. In the proposed protocol, the coordinator can not only minimize the number of empty slots by efficiently allocating slots to readers incoming in Poisson distribution, but reduce latency time through the limited frame size. The proposed protocol can be implemented in either mobile or fixed mode through the slot structure to be described in the context. The simulation results show it works as suggested and the frame size limitation as well as the statistical distribution of incoming readers has a great impact on the overall slots and the average latency time.

A Study on Inter-event Time with the Time-resolution (시간단위 변화를 고려한 각 지점별 적정 무강우시간 연구)

  • Song, Hyun-Keun;Joo, Kyungwon;Jung, Jinseok;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.167-167
    • /
    • 2016
  • 일반적으로 빈도해석은 강우의 연 최대 강우자료들을 통해 지속기간별 확률강우량을 산정한다. 하지만 강우자료들은 관측기간이 상대적으로 짧은 편이라 지점 별 강우특성을 고려한 확률강우량 산정은 쉽지 않다. 각 지점 별 강우특성을 고려하기 위해서 연속적인 시계열로 기록되어 있는 강우자료를 독립 강우사상으로 분리하여 강우사상간의 시간, 즉, 무강우시간을 결정하는 것이 선행되어야 한다. 연속강우자료를 독립 강우사상으로 분리하기 위해서는 강우사상 간의 기준이 필요하다. 기존의 연구에서는 강우사상을 분리하기 위한 기준으로 무강우시간(Inter-Event Time, IET)을 사용하고 있다. 국내의 경우에는 무강우시간을 10시간부터 12시간까지 다양하게 적용하고 있다. 따라서 본 연구에서는 기상청 산하 강우관측소의 우기(4월~10월) 자료를 이용하여 시간 단위를 각각 1분, 5분 그리고 1시간으로 분리하였다. 강우분리방법은 자기상관계수와 포아송분포(Poisson distribution)를 고려한 지수분포(exponential distribution)의 변동계수를 이용하여 무강우시간 결정 방법(Inter-Event Time Definition, IETD)을 적용하였다. 각 지점별로 추출된 1분, 5분 그리고 1시간의 무강우시간을 비교 및 분석하였고, 이를 통해 각 지점의 시간단위 특성에 의한 적절한 무강우시간 및 강우사상시간을 제시할 수 있을 것으로 판단된다.

  • PDF

Socioeconomic Predictors of Diabetes Mortality in Japan: An Ecological Study Using Municipality-specific Data

  • Okui, Tasuku
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.5
    • /
    • pp.352-359
    • /
    • 2021
  • Objectives: The aim of this study was to examine the geographic distribution of diabetes mortality in Japan and identify socioeconomic factors affecting differences in municipality-specific diabetes mortality. Methods: Diabetes mortality data by year and municipality from 2013 to 2017 were extracted from Japanese Vital Statistics, and the socioeconomic characteristics of municipalities were obtained from government statistics. We calculated the standardized mortality ratio (SMR) of diabetes for each municipality using the empirical Bayes method and represented geographic differences in SMRs in a map of Japan. Multiple linear regression was conducted to identify the socioeconomic factors affecting differences in SMR. Statistically significant socioeconomic factors were further assessed by calculating the relative risk of mortality of quintiles of municipalities classified according to the degree of each socioeconomic factor using Poisson regression analysis. Results: The geographic distribution of diabetes mortality differed by gender. Of the municipality-specific socioeconomic factors, high rates of single-person households and unemployment and a high number of hospital beds were associated with a high SMR for men. High rates of fatherless households and blue-collar workers were associated with a high SMR for women, while high taxable income per-capita income and total population were associated with low SMR for women. Quintile analysis revealed a complex relationship between taxable income and mortality for women. The mortality risk of quintiles with the highest and lowest taxable per-capita income was significantly lower than that of the middle-income quintile. Conclusions: Socioeconomic factors of municipalities in Japan were found to affect geographic differences in diabetes mortality.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.293-304
    • /
    • 2019
  • In this paper, a general model is developed to predict the distribution of interfacial shear and normal stresses of FG beam reinforced by porous FGM plates under mechanical loading. The beam is assumed to be isotropic with a constant Poisson's ratio and power law elastic modulus through the beam thickness. Stress distributions, depending on an inhomogeneity constant, were calculated and presented in graphicals forms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam, and it is shown that the inhomogeneities play an important role in the distribution of interfacial stresses. The results presented in the paper can serve as a benchmark for future analyses of functionally graded beams strengthened by imperfect varying properties plates. Numerical comparisons between the existing solutions and the present new solution enable a clear appreciation of the effects of various parameters. The results of this study indicated that the imperfect functionally graded panel strengthening systems are effective in enhancing flexural behavior of the strengthened FGM beams. This research is helpful in understanding the mechanical behaviour of the interface and design of hybrid structures.

Performance Analysis of LAN Interworking Unit for Capacity Dimensioning of Internet Access Links

  • Park, Chul-geun;Han, Dong-hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.692-699
    • /
    • 2000
  • We build and analyze some types of queueing model to discuss capacity dimensioning of access links of a LAN interworking unit connected to the Internet backbone network. We assume that the IWU has a FIFO buffer to transmit IP packets to the Internet through the backbone. In order to analyze the system, we use a Poisson process and an MMPP process as input traffic models of IP packets and we use a general service time distribution as a service time model. But we use both an exponential service time and a deterministic service time in numerical examples for simple and efficient performance comparisons. As performance measures, we obtain the packet loss probability and the mean packet delay. We present some numerical results to show the effect of arrival rate, buffer size and link capacity on packet loss and mean delay.

  • PDF

PRECISE LARGE DEVIATIONS FOR AGGREGATE LOSS PROCESS IN A MULTI-RISK MODEL

  • Tang, Fengqin;Bai, Jianming
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.447-467
    • /
    • 2015
  • In this paper, we consider a multi-risk model based on the policy entrance process with n independent policies. For each policy, the entrance process of the customer is a non-homogeneous Poisson process, and the claim process is a renewal process. The loss process of the single-risk model is a random sum of stochastic processes, and the actual individual claim sizes are described as extended upper negatively dependent (EUND) structure with heavy tails. We derive precise large deviations for the loss process of the multi-risk model after giving the precise large deviations of the single-risk model. Our results extend and improve the existing results in significant ways.

An analysis method Flexural Crack Propagation Behavior of Concrete with Aggregate Distribution of Section (단면의 골재분포를 고려한 콘크리트의 휨균열 진전 거동해석기법)

  • Chae, Young-Suk;Song, Kwan-Kwon;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.57-63
    • /
    • 2013
  • This paper discusses 2D models of beams for simulating the fracture of brittle materials. A simulation of an experiment on a concrete beam subjected to bending, in which two overlapping cracks occur, is used to study the effect of individual beam characteristics and different arrangements of the beams in the overall network mesh. It was found that any regular orientation of the beams influences the resulting crack patterns. Methods to implement a wide range of poisson's ratios are also developed, the use of the mesh to study arbitrary micro-structures is outlined. The crack pattern that are obtained with mesh are in good agreement with the experimental results. Also, numerical simulations of the tests were performed by means of a model, and non-integer dimensions were measured on the predicted mesh damage patterns.