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PRECISE LARGE DEVIATIONS FOR AGGREGATE LOSS

PROCESS IN A MULTI-RISK MODEL

Fengqin Tang and Jianming Bai

Abstract. In this paper, we consider a multi-risk model based on the
policy entrance process with n independent policies. For each policy,
the entrance process of the customer is a non-homogeneous Poisson pro-
cess, and the claim process is a renewal process. The loss process of
the single-risk model is a random sum of stochastic processes, and the
actual individual claim sizes are described as extended upper negatively
dependent (EUND) structure with heavy tails. We derive precise large
deviations for the loss process of the multi-risk model after giving the

precise large deviations of the single-risk model. Our results extend and
improve the existing results in significant ways.

1. Introduction

The classical risk model and its generations concentrate mainly on claim pro-
cess under the assumptions of independent and identically distributed (i.i.d.)
claim sizes and constant premium rate, however, those assumptions do not
always hold. Since whenever the insurer issues a policy, he will have to bur-
den the potential claims entitled by the policy. Based on this, Ng et al. [10]
studied the precise large deviations for the prospective process of a standard
customer-arrival-based insurance risk model, in which the customers’ potential
claim sizes are described as i.i.d. random variables (rv’s) with heavy tails, and
the customer-arrival process is an arbitrary nonnegative integer-valued process.
Shen et al. [12] obtained the precise large deviations for the actual aggregate
loss process of a nonstandard customer-arrival-based insurance risk model, in
which customer’s actual claim sizes are described as i.i.d. heavy tailed rv’s mul-
tiplied with a generalized shot function, and the aggregate loss process can be
treated as a Poisson shot noise process. Later, Yang et al. [18] investigated
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the precise large deviations for the aggregate loss process of a dependent com-
pound customer-arrival-based insurance risk model, in which each customer
purchases a random number of insurance contracts and the individual poten-
tial claim sizes are described as negatively dependent rv’s with heavy tails.
The research mentioned above arouses our interest and we focus on a more
realistic customer-arrival-based risk model that was first developed by Li and
Kong [7]. Here are some reasons why we are interested in this model. Firstly,
the individual claim time is often later than the corresponding arrival time.
This point has either never been mentioned in empirical research or vaguely
demonstrated. Secondly, the insurance company provides n types of insurance
contracts rather than one and each customer can claim more than once within
the validity time. We state the details of the model as follows:

For the ith type of policy, i = 1, . . . , n, the arrival time of the jth customer
is σi

j and that {Ni(t); t ≥ 0} is a counting process associated with {σi
j}

∞
j=1,

i.e., Ni(t) = max{j;σi
j ≤ t} is the number of the policies issued before t. T i

jk

denotes the duration time from σi
j to the kth claim time of the jth customer.

{M i
j(t); t ≥ 0} is the counting process associated with {T i

jk}
∞
k=1, i.e., M

i
j(t) =

max{k;T i
jk ≤ t}. The premium charged by the insurer and the validity time

are supposed to be two constants, denoted by di and ci, respectively. It is
obvious that the jth customer can claim at most M i

j(ci) times for each i.

The kth potential claim size of the jth customer is denoted by Y i
jk and the

corresponding actual claim size is Y i
jkI{T

i
jk ≤ t− σi

j} within the validity time.
Hence, the total claim amount of the jth customer and the loss process of the
model up to time t are, respectively,

Hi
j(t) =

Mi
j (ci)∑

k=1

Y i
jkI{T

i
jk ≤ t− σi

j}(1.1)

and

Xi(t) =

Ni(t)∑

j=1

(
Hi

j(t)− di
)
,(1.2)

where I{A} is the indicator function of event A. Thus, the total loss process of
the multi-risk model up to time t is

X(n, t) =

n∑

i=1

Xi(t).(1.3)

Remark 1.1. Throughout the paper, a summation over an empty index set
produces a value 0 by convention. Moreover, in (1.1), k = 0 means that the
customer has not claimed, namely Y i

j0 = 0. Note that Xi(t) can be considered
as a special shot noise process.

We study the large deviations of Xi(t) and X(n, t) respectively. For classical
works of large deviations with heavy tails, we refer to [5, 6, 9, 11, 14]. Recently,
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more attention is paid to the large deviations of partial or random sums of
rv’s with dependent structures. Wang et al. [16] showed that the negatively
associated (NA) structure has no effect on the asymptotic behavior of the tail
of partial sums, and Tang [13] considered large deviations for partial sums with
negatively dependent (ND) structure that is more verifiable than the commonly
used notion of NA. Later, Liu [8] extended the study to the extended negatively
dependent (END) structure. For more works on this topic, we refer to [2, 3, 17],
among many others.

Throughout, for positive functions a(x) and b(x), we write a(x) = o(b(x)) if
lim
x→∞

a(x)/b(x) = 0; a(x) . b(x) if lim sup
x→∞

a(x)/b(x) ≤ 1 or lim inf
x→∞

b(x)/a(x) ≥

1 and a(x) ∼ b(x) if both a(x) . b(x) and a(x) & b(x). Furthermore, for two
positive bivariate functions a(x; t) and b(x; t), we say that a(x; t) . b(x; t) holds
uniformly for x ∈ ∆t 6= ∅ as t → ∞ if

lim sup
t→∞

sup
x∈∆t

a(x; t)

b(x; t)
≤ 1.

The rest of this paper is organized as follows. Section 2 recalls the definition
of heavy tails and the dependent structures of random variables, shows some
notations used in our model and states our main results. The proofs of the
main results are presented in Sections 3, 4 and 5.

2. Notations and main results

In this paper, we are interested in the heavy tailed claims. A distribution
function F has dominated varying tails (denoted by D) if and only if

lim sup
x→∞

F (xy)

F (x)
< ∞ for any y ∈ (0, 1) (or, equivalently, for y = 1

2 ).

Closely related class is the long-tailed class (denoted by L). A distribution
function F is in L if and only if

lim
x→∞

F (x+ y)

F (x)
= 1 for any y > 0.

Another important subclass of heavy-tailed distributions is the consistently
varying class (denoted by C). A distribution function F is in C if and only if

lim
yց1

lim inf
x→∞

F (xy)

F (x)
= 1, or, equivalently, lim

yր1
lim sup
x→∞

F (xy)

F (x)
= 1.

It is well known that C ⊂ D ∩ L. Set F ∗(y) = lim inf
x→∞

F (xy)

F (x)
and JF =

inf{− logF∗(y)
log y

: y > 1}, where JF is called the upper Matuszewska index

of the distribution function F . For more details of the Matuszewska indices see
[1].

Now, we introduce a dependent structure of rv’s.
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Definition 2.1. The rv’s {ξk; k = 1, 2, . . .} are called extended negatively
dependent (END) if there is some M > 0 such that both

Pr
( m⋂

k=1

{ξk ≤ xk}
)
≤ M

m∏

k=1

Pr(ξk ≤ xk)(2.1)

and

Pr
( m⋂

k=1

{ξk > xk}
)
≤ M

m∏

k=1

Pr(ξk > xk)(2.2)

hold for m = 1, 2, . . . and all x1, . . . , xm.

Remark 2.1. Recall that ξ1, ξ2, . . . are called ELND if (2.1) holds and EUND
if (2.2) holds. the rv’s ξ1, ξ2, . . . are called negatively dependent (ND) with
M = 1, and they are called positively dependent (PD) if the inequalities (2.1)
and (2.2) hold both in the reverse direction. Obviously, an ND sequence must
be an END sequence. Furthermore, for some PD sequences, it is possible to
find a right positive constant M such that (2.1) and (2.2) hold. Therefore, the
END structure is more general than the ND structure in that it can reflect not
only a negative dependence structure but also a positive one to some extent.
More details of ND can be found in Ebrahimi and Ghosh [4].

For model (1.3), we assume that the n kinds of policies are mutually inde-
pendent. Besides this, we need some further assumptions on our model. For
each i = 1, . . . , n, we suppose that:

Assumption 2.1. {Ni(t); t ≥ 0} is a non-homogeneous Poisson process with
finite intensity function λi(t), and the accumulated intensity function Λi(t) =∫ t

0 λi(s) ds satisfying Λi(t) → ∞ as t → ∞.

Assumption 2.2. {M i
j(t); t ≥ 0}j are independent ordinary renewal processes

with mean function EM i
j(t) = νi(t), j ≥ 1.

Assumption 2.3. The nonnegative rv’s Y i
jk, j ≥ 1, k ≥ 1 are independent

with a common distribution function Fi ∈ C satisfying µi = EY i
11 < ∞.

Assumption 2.4. The sequences {Y i
jk; j ≥ 1, k ≥ 1}, {M i

j(t); t ≥ 0} and

{Ni(t); t ≥ 0} are mutually independent.

Remark 2.2. By Assumptions 2.2 and 2.3, for i = 1, . . . , n, we can take di =
(1 + ρ)µiνi(ci) with ρ as the safety loading coefficient.

Under Assumption 2.1 and Lemma 8.1 of Mikosch and Nagaev [9], we can
conclude that for every t > 0 and i = 1, . . . , n,

Xi(t)
d
=

Ni(t)∑

j=1

(Mi
j(ci)∑

k=1

Y i
jkI{T

i
jk ≤ t− U i

j} − di
)
,(2.3)
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where {U i
j , j ≥ 1} is a sequence of i.i.d. rv’s with a common distribution

function Λi(s)
Λi(t)

for 0 ≤ s ≤ t, independent of the non-homogeneous Poisson

processes Ni(t) and all other sources of randomness.

Now we introduce some notations that will be used later. For fixed t > 0,
i = 1, . . . , n and all j ≥ 1, k ≥ 1, write

Zi
jk(t) = Y i

jkI{T
i
jk ≤ t− U i

j} and hi
j =

Mi
j (ci)∑

k=1

Y i
jk.

For easiness of notations, we use Ĥi
j(t) and X̂i(t) to denote

Mi
j(ci)∑
k=1

Zi
jk(t) and

Ni(t)∑
j=1

(
Mi

j (ci)∑
k=1

Zi
jk(t)− di), respectively.

For each i = 1, . . . , n, by Assumption 2.2 and Assumption 2.3, it is easy to
check that the rv’s hi

1, h
i
2, . . . are mutually independent and

Pr(hi
j > x) =

∞∑

m=1

Pr(M i
j(ci) = m)Pr(

m∑

k=1

Y i
jk > x)(2.4)

∼ νi(ci)F i(x) as x → ∞.

Unfortunately, for fixed i and j, it seems not accurate to say that {Zi
jk(t)}k

is a sequence of independent rv’s since Zi
j1(t), Z

i
j2(t), . . . contain a common U i

j .

Precisely, we assume that {Zi
jk(t)}k fulfill the following dependence structure.

Assumption 2.5. For fixed i, j and t > ci, the sequence {Zi
jk(t)}k is EUND.

Remark 2.3. Assumption 2.5 is natural from the following discussions. For any
xl, xk, 1 ≤ k 6= l < ∞, by Assumption 2.2, we have

Pr(Zi
jk(t) > xk, Z

i
jl(t) > xl)

= Pr(Y i
jk > xk, Y

i
jl > xl)Pr(T

i
jk ≤ t− Uj , T

i
jl ≤ t− U i

j)

= F i(xk)F i(xl)Pr(T
i
j(k∨l) ≤ t− U i

j),

where k ∨ l = max{k, l}. Choosing some positive constant M satisfying M ≥
sup
k

1
P (T i

jk
≤t−Ui

j )
such that

Pr(Zi
jk(t) > xk, Z

i
jl(t) > xl) ≤ MPr(Zi

jk(t) > xk)Pr(Z
i
jl(t) > xl).

Similarly, for any m ≥ 2 and all real number x1, x2, . . . , xm, we derive

Pr(Zi
j1(t) > x1, . . . , Z

i
jm(t) > xm) ≤ M

m∏

k=1

Pr(Zi
jk(t) > xk)(2.5)

with the coefficient M > 0 satisfying M ≥
[m−1∏

k=1

Pr(T i
jk ≤ t− U i

j)
]−1

.
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For a real number x, [x] stands for its integer part. Now we state the main
results of this paper.

Theorem 2.1. Suppose that Assumptions 2.1-2.5 hold. Then, for each γ > 0,
the relation

Pr
( [Λ1(t)]∑

j=1

Ĥ1
j (t)− [Λ1(t)]µ1ν1(c1) > x

)
∼ [Λ1(t)]ν1(c1)F 1(x)(2.6)

holds uniformly for x ≥ γΛ1(t), t → ∞.

Theorem 2.2. Suppose that Assumptions 2.1-2.5 hold. Then, for each γ > 0,
the relation

Pr
(
X1(t)− Λ1(t)(µ1ν1(c1)− d1) > x

)
∼ Λ1(t)ν1(c1)F 1(x)(2.7)

holds uniformly for x ≥ γΛ1(t), t → ∞.

Theorem 2.3. Suppose that Assumptions 2.1-2.5 hold. Then, for each γ > 0,
the relation

Pr
(
X(n, t)−

n∑

i=1

Λi(t)(µiνi(ci)− di) > x
)
∼

n∑

i=1

Λi(t)νi(ci)F i(x)(2.8)

holds uniformly for x ≥ γΛn(t), Λn(t) = max
1≤i≤n

{Λi(t)}, t → ∞.

3. Proof of Theorem 2.1

We start our proof with some famous results of heavy-tailed distributions.
The first lemma below is from Tang and Tsitsiashvili [15].

Lemma 3.1. If F ∈ D, then

(i) for each p > JF , there exist positive constants x0 and B such that for all

θ ∈ (0, 1] and x ≥ θ−1x0,

F (θx)

F (x)
≤ Bθ−p.

(ii) it holds for each constant p > JF such that x−p = o(F (x)), and JF ≥ 1
if the distribution function F (x) = F (x)I{x ≥ 0} has a finite mean.

Lemma 3.2. Under Assumptions 2.1-2.5, for fixed i = 1, . . . , n and t > ci,
the rv’s {Zi

jk(t); j ≥ 1, k ≥ 1} belong to C.

Proof. Recall that Fi ∈ C, for any fixed t > ci, we have

lim
yց1

lim inf
x→∞

Pr(Zi
jk(t) > xy)

Pr(Zi
jk(t) > x)

= lim
yց1

lim inf
x→∞

F i(xy)Pr(T
i
jk ≤ t− U i

j)

F i(x)Pr(T i
jk ≤ t− U i

j)
= 1.

Parallelly,

lim
yր1

lim sup
x→∞

Pr(Zi
jk(t) > xy)

Pr(Zi
jk(t) > x)

= 1.
�



PRECISE LARGE DEVIATIONS FOR AGGREGATE LOSS PROCESS 453

Lemma 3.3. Suppose that Assumptions 2.2-2.5 hold. Then, for t → ∞,

[Λ1(t)]∑
j=1

(Ĥ1
j (t)− h1

j)

[Λ1(t)]

P
→ 0.

Proof. Recall that {M1
j (t); t ≥ 0} is a renewal process for fixed j ≥ 1, c1 is a

constant, hence, M1
j (c1) < ∞. For any 0 < β ≤ 1, by Minkowski inequality,

we have

E
∣∣∣Ĥ1

j (t)− h1
j

∣∣∣
β

=

∞∑

m=1

Pr(M1
j (c1) = m)E

∣∣∣
m∑

k=1

Y 1
jkI{T

1
jk > t− U1

j }
∣∣∣
β

≤
1

Λ1(t)

∞∑

m=1

Pr(M1
j (c1) = m)

m∑

k=1

E|Y 1
jk|

β

∫ t

t−c1

Pr(T 1
jk > t− s)dΛ1(s)

≤
1

Λ1(t)
ν1(c1)E|Y

1
11|

β(Λ1(t)− Λ1(t− c1)).

Using Minkowski inequality again, it holds for t → ∞ that

E
∣∣∣

[Λ1(t)]∑
j=1

(Ĥ1
j (t)− h1

j)

[Λ1(t)]

∣∣∣
β

≤
1

[Λ1(t)]β

[Λ1(t)]∑

j=1

E|Ĥ1
j (t)− h1

j |
β

≤
1

[Λ1(t)]β
[Λ1(t)]

Λ1(t)
ν1(c1)E|Y

1
11|

β(Λ1(t)− Λ1(t− c1))

→ 0.

This ends the proof of Lemma 3.3. �

Lemma 3.4. Under Assumptions 2.1-2.5, for any δ > 0, it follows that

lim
t→∞

Pr
(∣∣

[Λ1(t)]∑

j=1

Ĥ1
j (t)− [Λ1(t)]µ1ν1(c1)

∣∣ > δΛ1(t)
)
= 0.

Proof. For any δ > 0,

Pr
(∣∣

[Λ1(t)]∑

j=1

Ĥ1
j (t)− [Λ1(t)]µ1ν1(c1)

∣∣ > δΛ1(t)
)

≤ Pr
(∣∣

[Λ1(t)]∑

j=1

(Ĥ1
j (t)−h1

j)
∣∣> δΛ1(t)

2

)
+ Pr

(∣∣
[Λ1(t)]∑

j=1

h1
j−[Λ1(t)]µ1ν1(c1)

∣∣> δΛ1(t)
2

)

= I1 + I2.
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By Lemma 3.3, I1 converges to zero as t → ∞. Since

E
[ [Λ1(t)]∑

j=1

h1
j

]
= [Λ1(t)]µ1ν1(c1),

by the law of large numbers for the partial sums
[Λ1(t)]∑
j=1

h1
j , I2 converges to zero

as t → ∞. This ends the proof of Lemma 3.4. �

Lemma 3.5. Under Assumptions 2.2-2.5, for any δ > 0 and x > 0, there

exists some positive constant C1 = C1(δ) such that

Pr(h1
j > x) ≤ ν1(c1)F 1(δx) + C1x

− 1
δ .

Proof. By Lemma 2.4 of Ng et al. [11], there exist positive constants δ and
C = C(δ) such that for all x > 0 and m ≥ 1,

Pr(

m∑

k=1

Y 1
jk > x) ≤ mF 1(δx) + Cm

1
δ x− 1

δ .

Since M1
j (c1) < ∞, for any j ≥ 1, we have

Pr(h1
j > x) =

∑

m≥1

Pr(M1
j (c1) = m)Pr(

m∑

k=1

Y 1
jk > x)

≤
∑

m≥1

Pr(M1
j (c1) = m)

[
mF 1(δx) + Cm

1
δ x− 1

δ

]

= ν1(c1)F 1(δx) + C1x
− 1

δ ,

where C1 = CE[M1
j (c1)]

1
δ < ∞. This ends the proof of Lemma 3.5. �

Lemma 3.6. Under Assumptions 2.1-2.5, for any t > 0, x > 0 and l ≥ 1, there
exist some positive constants v, δ (v < δ), C2 = C2(v, δ) and C3 = C3(v, δ)
such that

Pr(
l∑

j=1

Ĥ1
j (t) > x) ≤ lν1(c1)F 1(vx) + C2lx

− 1
v + C3l

1
δ x− 1

δ .(3.1)

Proof. Recall Ĥ1
j (t) and h1

j , denote h̃1
j = h1

jI{0 ≤ h1
j ≤ δx} + δxI{h1

j >
δx}. By employing the arguments in Lemma 2.3 of Chen et al. [2], we obtain,
respectively, for r > 0,

Pr(

l∑

j=1

Ĥ1
j (t) > x) ≤ Pr(

l∑

j=1

h1
j > x) ≤ lPr(h1

j > δx) + Pr(

l∑

j=1

h̃1
j > x)(3.2)
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and

Pr(

l∑

j=1

h̃1
j > x) ≤ e−rxEe

r
l∑

j=1

h̃1
j

(3.3)

≤ exp
{
− rx + l

(erδx − 1

δx
µ1ν1(c1) + (erδx − 1)Pr(h1

j > δx)
)}

.

Lemma 3.5 implies that for some 0 < v < δ, there exists some positive constant
C2 = C2(v, δ) such that

Pr(h1
j > δx) ≤ ν1(c1)F 1(vx) + C2x

− 1
v .(3.4)

By the finiteness of µ1 and the fact of F1 ∈ C ⊂ D, it holds for x → ∞ that

xF 1(vx) → 0.(3.5)

Take r = ln
(

x
lµ1ν1(c1)

+ 1
)/

δx. For some small v > 0 that satisfies 1 − 1
v
< 0,

it follows from (3.4) and (3.5) that

Pr(

l∑

j=1

h̃1
j > x) ≤ exp

{
− rx +

1

δ
+

xF 1(vx)

µ1
+ C2

x1− 1
v

µ1ν1(c1)

}
(3.6)

≤ C3l
1
δ x− 1

δ ,

where

C3 = sup
x>0

exp
{1

δ
+

xF 1(vx)

µ1
+ C2

x1− 1
v

µ1ν1(c1)

}
(µ1ν1(c1))

1
δ < ∞.

Substituting (3.4) and (3.6) into (3.2) yields (3.1). �

Lemma 3.7. Under Assumption 2.2-2.5, for any t > c1 and j ≥ 1, it follows
that

Pr(

m∑

k=1

Z1
jk(t) > x) ∼

m∑

k=1

Pr(Z1
jk(t) > x) as x → ∞.

Proof. Observe that, for fixed t > c1 and j ≥ 1, by Assumption 2.5, we have

Pr(

m∑

k=1

Z1
jk(t) > x) ≥ Pr( max

1≤k≤m
Z1
jk(t) > x)

=
m∑

k=1

Pr(Z1
jk(t) > x)−

∑

1≤k<l≤m

Pr(Z1
jk(t) > x,Z1

jl(t) > x)

≥
m∑

k=1

Pr(Z1
jk(t) > x)−M

[ m∑

k=1

Pr(Z1
jk(t) > x)

]2
.
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It follows from (3.5) that Pr(Z1
jk(t) > x) = F 1(x)Pr(T

1
jk ≤ t − U1

j ) → 0 as
x → ∞. Thus,

Pr(

m∑

k=1

Z1
jk(t) > x) &

m∑

k=1

Pr(Z1
jk(t) > x).

By a standard truncation argument we have

Pr(

m∑

k=1

Z1
jk(t) > x)

= Pr(
m∑

k=1

Z1
jk(t) > x, max

1≤k≤m
Z1
jk(t) > (1− δ)x)

+ Pr(

m∑

k=1

Z1
jk(t) > x, max

1≤k≤m
Z1
jk(t) ≤ (1 − δ)x)

≤
m∑

k=1

Pr(Z1
jk(t)>(1−δ)x) +

m∑

k=1

Pr(
∑

1≤l≤m;l 6=k

Z1
jl(t) > δx, Z1

jk(t) >
x

m
)

≤
m∑

k=1

Pr(Z1
jk(t)>(1−δ)x) +M

∑

1≤l≤m;l 6=k

m∑

k=1

Pr(Z1
jl(t)>

δx

m
)Pr(Z1

jk(t)>
x

m
).

By Lemma 3.1 and Lemma 3.2, for any j ≥ 1, 1 ≤ k ≤ m and t > c1, we
have

Pr(Z1
jk(t) >

x

m
) ≤ I{x ≤ mx0}+ Pr(Z1

jk(t) >
x

m
)I{x > mx0}(3.7)

≤ (
mx0

x
)p +BmpPr(Z1

jk(t) > x)

≤ C4m
pPr(Z1

jk(t) > x),

with a positive constant C4 > B. Therefore, for any m ≥ 1,

lim sup
x→∞

∑
1≤l≤m;l 6=k

m∑
k=1

Pr(Z1
jl(t) >

δx
m
)Pr(Z1

jk(t) >
x
m
)

m∑
k=1

Pr(Z1
jk(t) > x)

= 0.

Thus, letting δ → 0, by Lemma 3.2, it holds for x → ∞ that

Pr(

m∑

k=1

Z1
jk(t) > x) .

m∑

k=1

Pr(Z1
jk(t) > x).

The proof of Lemma 3.7 is accomplished. �

Lemma 3.8. Under the Assumptions 2.2-2.5, for any t > c1 and j ≥ 1, the
relation

Pr(Ĥ1
j (t) > x) & ν1(c1)F 1(x)Pr(U

1
j ≤ t− c1)

holds for x → ∞.
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Proof. For some 0 < m0 < ∞, we have

Pr(Ĥ1
j (t) > x) =

∞∑

m=1

Pr(M1
j (c1) = m)Pr(

m∑

k=1

Z1
jk(t) > x)

=
( m0∑

m=1

+

∞∑

m=m0+1

)
Pr(M1

j (c1) = m)Pr(

m∑

k=1

Z1
jk(t) > x)

= I3 + I4.

For I3. Recall that F1 ∈ C, for x → ∞, we have

I3 ≥
m0∑

m=1

Pr(M1
j (c1) = m)

∫ t−c1

0−
Pr(

m∑

k=1

Y 1
jk > x)Pr(U1

j ∈ ds)

∼ F 1(x)
Λ1(t− c1)

Λ1(t)

m0∑

m=1

Pr(M1
j (c1) = m)m

= F 1(x)
Λ1(t− c1)

Λ1(t)
E[M1

j (c1)I{M
1
j (c1) ≤ m0}].

For I4. By Kesten’s inequality, it holds for every 0 < δ < 1 and some C5 > 0
such that

I4 ≤
∞∑

m=m0+1

Pr(M1
j (c1) = m)Pr(

m∑

k=1

Y 1
jk > x)

≤ C5F 1(x)

∞∑

m=m0+1

Pr(M1
j (c1) = m)(1 + δ)m.

Since M1
j (c1) has a finite moment generating function, we have

lim sup
x→∞

I4
I3

≤
C5Λ1(t)

Λ1(t− c1)

∞∑
m=m0+1

Pr(M1
j (c1) = m)(1 + δ)m

E[M1
j (c1)I{M

1
j (c1) ≤ m0}]

.

Then, letting m0 sufficiently large yields that I4 = o(I3). Thus, by Lemma 3.7,
for x → ∞ and any t > c1, it holds for sufficiently large m0 that,

Pr
(
Ĥ1

j (t) > x
)
∼

m0∑

m=1

Pr(M1
j (c1) = m)

m∑

k=1

Pr(Z1
jk(t) > x)

≥
m0∑

m=1

Pr(M1
j (c1) = m)

m∑

k=1

Pr(Y 1
jkI{U

1
j ≤ t− c1} > x)

= F 1(x)Pr(U
1
j ≤ t− c1)

m0∑

m=1

mPr(M1
j (c1) = m)

→ ν1(c1)F 1(x)Pr(U
1
j ≤ t− c1).

The proof of Lemma 3.8 is accomplished. �
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Proof of Theorem 2.1. The lower estimation. For fixed t > 0, write

S[Λ1(t)](t) =

[Λ1(t)]∑

j=1

Ĥ1
j (t), S[Λ1(t)](t) = S[Λ1(t)](t)− [Λ1(t)]µ1ν1(c1).

For any 0 < δ < 1, we have

Pr
( [Λ1(t)]∑

j=1

Ĥ1
j (t)− [Λ1(t)]ν1(c1)µ1 > x

)
(3.8)

≥ Pr
(
S[Λ(t)](t) > x,

⋃

1≤j≤[Λ1(t)]

{
Ĥ1

j (t) > (1 + δ)x, max
l 6=j

Ĥ1
l (t) ≤ (1 + δ)x

})

=

[Λ1(t)]∑

j=1

Pr(Ĥ1
j (t) > (1 + δ)x)

× Pr(S[Λ1(t)]−1(t) > −δx+ ν1(c1)µ1, max
1≤l≤[Λ1(t)];l 6=j

Ĥ1
l (t) ≤ (1 + δ)x).

Recalling that F1 ∈ C, by Lemma 3.8 and the fact of Pr(U1
j ≤ t − c1) =

Λ1(t−c1)
Λ1(t)

→ 1 as t → ∞, it holds uniformly for x ≥ γΛ1(t), t → ∞ that

[Λ1(t)]∑

j=1

Pr
(
Ĥ1

j (t) > (1 + δ)x
)
& [Λ1(t)]ν1(c1)F 1(x).(3.9)

Now we consider Pr
(
max
l 6=j

Ĥ1
l (t) ≤ (1 + δ)x

)
. By Lemma 3.8, for x ≥ γΛ1(t),

t → ∞,

Pr
(

max
1≤l≤[Λ1(t)];l 6=j

Ĥ1
l (t) ≤ (1 + δ)x

)
(3.10)

=
∏

1≤l≤[Λ1(t)];l 6=j

Pr(Ĥ1
l (t) ≤ (1 + δ)x)

=
∏

1≤l≤[Λ1(t)];l 6=j

(
1− Pr(Ĥ1

l (t) > (1 + δ)x
)

≤
(
1− ν1(c1)F 1((1 + δ)x)

)[Λ1(t)]−1

→ 1.

Furthermore, Lemma 3.4 states that

lim
t→∞

lim inf
x≥γΛ1(t)

Pr(S[Λ1(t)]−1(t) > −δx+ ν1(c1)µ1) = 1.(3.11)

Substituting (3.9), (3.10) and (3.11) into (3.8), it holds uniformly for x ≥
γΛ1(t), t → ∞ that

Pr
( [Λ1(t)]∑

j=1

Ĥ1
j (t)− [Λ1(t)]µ1ν1(c1) > x

)
& [Λ1(t)]ν1(c1)F 1(x).(3.12)
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The upper estimation. For 0 < δ < 1, denote H̃1
j (t) = Ĥ1

j (t)I{Ĥ
1
j (t) ≤

(1− δ)x}. A standard truncation argument gives that

Pr
( [Λ1(t)]∑

j=1

Ĥ1
j (t)− [Λ1(t)]µ1ν1(c1) > x

)
(3.13)

≤

[Λ1(t)]∑

j=1

P (Ĥ1
j (t) > (1− δ)x) + Pr

( [Λ1(t)]∑

j=1

H̃1
j (t) > x+ [Λ1(t)]µ1ν1(c1)

)

≤

[Λ1(t)]∑

j=1

P (h1
j > (1 − δ)x) + Pr

( [Λ1(t)]∑

j=1

H̃1
j (t) > x+ [Λ1(t)]µ1ν1(c1)

)

= (1 + o(1))[Λ1(t)]ν1(c1)F 1(x) + I5,

where the last step is due to (2.4) and the arbitrariness of δ. Set

a = max{− ln
(
[Λ1(t)]ν1(c1

)
F 1(x)

)
, 1}, r =

a− pτ ln a

(1− δ)x

with τ > 2 and p > JF . Notice that a → ∞, r → 0 as x ≥ γΛ1(t), t → ∞.
Using Markov’s inequality yields that

I5

[Λ1(t)]ν1(c1
)
F 1(x)

(3.14)

≤ exp
{
− r(x + [Λ1(t)]µ1ν1(c1)) + a

} [Λ1(t)]∏

j=1

EerH̃
1
j (t).

By virtue of the inequality ery − 1 ≤ ryery, for fixed t > 0, we have

EerH̃
1
j (t)(3.15)

≤

∫ (1−δ)x

0

(ery − 1)Pr(H1
j (t) ∈ dy) + 1

≤

∫ (1−δ)x
aτ

0

(ery − 1)Pr(H1
j (t) ∈ dy) +

∫ (1−δ)x

(1−δ)x
aτ

eryPr(H1
j (t) ∈ dy) + 1

≤ rer
(1−δ)x

aτ µ1ν1(c1) + er(1−δ)xPr(h1
j >

(1− δ)x

aτ
) + 1

≤ rer
(1−δ)x

aτ + (1 + δ)er(1−δ)xν1(c1)F 1

( (1− δ)x

aτ
)
+ 1

≤ rea
1−τ

µ1ν1(c1) + C4(1 + δ)eaν1(c1)F 1((1− δ)x) + 1,

where all the inequalities except the last one follows from (2.4) and the last
one is obtained by (3.7). Substituting (3.15) into (3.14) yields that

I5

[Λ1(t)]ν1(c1
)
F 1(x)
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≤ exp
{
− r(x + [Λ1(t)]µ1ν1(c1)) + a

+ [Λ1(t)](re
a1−τ

µ1ν1(c1) + C4(1 + δ)eaν1(c1)F 1((1 − δ)x))
}

≤ exp
{
− r(x + [Λ1(t)]µ1ν1(c1)) + a

+ [Λ1(t)]re
a1−τ

µ1ν1(c1) +
C4(1 + δ)F 1((1− δ)x)

F 1(x)

}
.

Since a1−τ → 0 as t → ∞, by a Taylor series expansion ea
1−τ

= 1 + a1−τ +
o(a1−τ ), we get

I5

[Λ1(t)]ν1(c1)F 1(x)
≤ C6 exp{(1−

1

1− δ
)a+ a2−τ µ1ν1(c1)

γ(1− δ)
+ o(a2−τ )} → 0,

(3.16)

where C6 = sup
x>0

exp{C4(1+δ)F 1((1−δ)x)

F 1(x)
} < ∞. In view of (3.8)-(3.16), the proof

of Theorem 2.1 is accomplished. �

4. Proof of Theorem 2.2

By Lemma 1 of Yang et al. [18], one can immediately obtain the following
result:

Lemma 4.1. Under Assumption 2.1, it holds for any positive constants q and

δ that

E[N1(t)]
qI{N1(t) > (1 + δ)Λ1(t)} = o(1), t → ∞.

Proof of Theorem 2.2. By the law of large numbers of Poisson process, there
exists some small constant δ > 0 such that

Pr(|N1(t)− Λ1(t)| ≤ δΛ1(t)) → 1, t → ∞,

that is, for sufficiently large t,

1− δ ≤ Pr(|N1(t)− Λ1(t)| ≤ δΛ1(t)) ≤ 1 + δ.(4.1)

We can split (2.7) into three parts as follows:

Pr
(
X1(t)− Λ1(t)(µ1ν1(c1)− d1) > x

)
(4.2)

= Pr(

N1(t)∑

j=1

(
Ĥ1

j (t)− d1
)
− Λ1(t)(µ1ν1(c1)− d1) > x)

=

∞∑

l=1

Pr(N1(t) = l)Pr(

l∑

j=1

(Ĥ1
j (t)− d1)− Λ1(t)(µ1ν1(c1)− d1) > x)

=
( ∑

l<(1−δ)Λ1(t)

+
∑

|l−Λ1(t)|≤δΛ1(t)

+
∑

l>(1+δ)Λ1(t)

)
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× Pr(N1(t) = l)Pr(

l∑

j=1

(Ĥ1
j (t)− d1)− Λ1(t)(µ1ν1(c1)− d1) > x)

= J1 + J2 + J3.

We first deal with the sum of J1 in (4.2). For some positive δ small enough
such that γ−δρµ1ν1(c1) > 0, i.e., x−δρΛ1(t)µ1ν1(c1) ≥ Λ1(t)(γ−δρµ1ν1(c1)) >
0 with ρ as the safety loading coefficient mentioned in Remark 2.2. Then,
applying Theorem 2.1, uniformly for x ≥ γΛ1(t), t → ∞, we get

J1 ≤ Pr(N1(t) < (1− δ)Λ1(t))(4.3)

× Pr
([(1−δ)Λ1(t)]∑

j=1

Ĥ1
j (t)− [(1− δ)Λ1(t)]µ1ν1(c1) > x− δρΛ1(t)µ1ν1(c1)

)

= o(1)[(1 − δ)Λ1(t)]ν1(c1)F 1(x− δρΛ1(t)µ1ν1(c1))

= o
(
Λ1(t)ν1(c1)F 1(x)

)
,

where the last step is obtained by δ → 0 and F1 ∈ C.
Next, turn to J2. Uniformly for x ≥ γΛ1(t), t → ∞, the following holds:

J2 ≤ Pr
(
|N1(t)− Λ1(t)| ≤ δΛ1(t)

)
(4.4)

× Pr
([(1+δ)Λ1(t)]∑

j=1

Ĥ1
j (t)− [(1 + δ)Λ1(t)]µ1ν1(c1) > x+ δρΛ1(t)µ1ν1(c1)

)

≤ (1 + δ)[(1 + δ)Λ1(t)ν1(c1)]F 1(x+ δρΛ1(t)µ1ν1(c1))

∼ Λ1(t)ν1(c1)F 1(x),

where the last step is due to δ → 0 and F1 ∈ C. We now prove

J2 & Λ1(t)ν1(c1)F 1(x).

By similar arguments used to estimate J1, by Theorem 2.1, it holds uniformly
for x ≥ γΛ1(t), t → ∞ that

J2 ≥ Pr
(
|N1(t)− Λ1(t)| ≤ δΛ1(t)

)
(4.5)

× Pr
([(1−δ)Λ1(t)]∑

j=1

Ĥ1
j (t)− [(1− δ)Λ1(t)]µ1ν1(c1) > x− δρΛ1(t)µ1ν1(c1)

)

≥ (1 − δ)[(1− δ)Λ1(t)ν1(c1)]F 1(x− δρΛ1(t)µ1ν1(c1))

∼ Λ1(t)ν1(c1)F 1(x).

Finally, for J3. By the arbitrariness of δ and v in Lemma 3.6, there exist
some δ and v such that 1

v
> 1

δ
> p for p > JF > 1. Then,

J3 ≤
∑

l>(1+δ)Λ1(t)

Pr(N1(t) = l)[lν1(c1)F 1(vx) + C2lx
− 1

v + C3l
1
δ x− 1

δ ](4.6)

≤ ν1(c1)F 1(vx)EN1(t)I{N1(t) > (1 + δ)Λ1(t)}
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+ C2x
−pEN1(t)I{N1(t) > (1 + δ)Λ1(t)}

+ C3x
−pENp

1 (t)I{N1(t) > (1 + δ)Λ1(t)}

= o(Λ1(t)ν1(c1)F 1(x)),

where the last step is obtained by Lemma 3.1 and Lemma 4.1. Precisely, Lemma
3.1 shows that x−p = o(F 1(x)) for p > JF > 1, and Lemma 4.1 states that
EN q

1 (t)I{N1(t) > (1 + δ)Λ1(t)} = o(1) for any q > 0, specifically, q = 1 and
q = p in (4.6), respectively. In view of (4.2)-(4.6), the proof is accomplished. �

5. Proof of Theorem 2.3

For fixed t > 0, write Xi(t) = X̂i(t) − Λi(t)(µiνi(ci) − di), i = 1, . . . , n.
Firstly, we show three useful relations (5.1), (5.2) and (5.3) before proving
(2.8). By Theorem 2.2, for x ≥ γΛn(t) and sufficiently large t, we obtain that

(1− δ)Λi(t)νi(ci)F i(x) ≤ Pr(Xi(t) > x)(5.1)

≤ (1 + δ)Λi(t)νi(ci)F i(x), i = 1, . . . , n.

Furthermore, for i = 1, . . . , n and sufficiently large t, it follows from (4.1) that

Pr
(
|Ni(t)− Λi(t)| < δΛi(t)

)
≥ 1− δ.(5.2)

Hence, for any i = 1, . . . , n, by Lemma 3.4 and (5.2), it holds uniformly for
x ≥ γΛn(t) and sufficiently large t that

Pr(Xi(t) > −δx)(5.3)

≥ Pr
(
|Ni(t)− Λi(t)| < δΛi(t)

)

× Pr
([(1−δ)Λi(t)]∑

j=1

Ĥi
j(t)− [(1 − δ)Λi(t)]µiνi(ci) > −δx− ρδΛi(t)µiνi(ci)

)

≥ (1− δ)Pr
([(1−δ)Λi(t)]∑

j=1

Ĥi
j(t)−[(1−δ)Λi(t)]µiνi(ci) > −δΛi(t)(γ + ρµiνi(ci))

)

≥ (1− δ)2.

Now, we prove (2.8). Let us proceed the proof by induction. For the case
in which n = 2 we first show the lower estimation. For any δ > 0, it holds
uniformly for x ≥ γΛ2(t) and sufficiently large t that

Pr(X(2, t)−
2∑

i=1

Λi(t)(µiνi(ci)− di) > x)(5.4)

= Pr(X1(t) +X2(t) > x)

≥ Pr(X1(t) > (1 + δ)x)Pr(X2(t) > −δx)

+ Pr(X2(t) > (1 + δ)x)Pr(X1(t) > −δx)

− Pr(X1(t) > (1 + δ)x)Pr(X2(t) > (1 + δ)x).
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≥ (1− δ)3Λ1(t)ν1(c1)F 1((1 + δ)x) + (1− δ)3Λ2(t)ν2(c2)F 2((1 + δ)x)

− (1− δ)2Λ1(t)ν1(c1)F 1((1 + δ)x)Λ2(t)ν2(c2)F 2((1 + δ)x),

where the last step is obtained by (5.1) and (5.3). On the other hand, since
µi < ∞, it holds uniformly for x ≥ γΛ2(t), t → ∞ that

Λi(t)νi(ci)F i((1 + δ)x) ≤ γ−1xνi(ci)F i((1 + δ)x) → 0.(5.5)

Thus, for any δ > 0,

lim
t→∞

lim inf
x≥γΛ2(t)

Λ1(t)ν1(c1)F 1((1 + δ)x)Λ2(t)ν2(c2)F 2((1 + δ)x)

Λ1(t)ν1(c1)F 1((1 + δ)x) + Λ2(t)ν2(c2)F 2((1 + δ)x)
= 0.(5.6)

By (5.5) and (5.6) and letting δ → 0 yields that

lim
δ→0

lim
t→∞

lim inf
x≥γΛ2(t)

Pr(X(2, t)−
2∑

i=1

Λi(t)(µiνi(ci)− di) > x)

2∑
i=1

Λi(t)νi(ci)F i(x)

≥ 1.(5.7)

Now, we consider the upper estimation. For any δ > 0, it holds uniformly
for x ≥ γΛ2(t) and sufficiently large t that

Pr(X(2, t)−
2∑

i=1

Λi(t)(µiνi(ci)− di) > x)(5.8)

≤ Pr
(
max
1≤i≤2

Xi(t) ≥ (1−δ)x
)
+Pr

(
X1(t)+X2(t) > x, max

1≤i≤2
Xi(t) ≤ (1−δ)x

)

≤
2∑

i=1

Pr(Xi(t) > (1 − δ)x) +
∑

i,l=1,2;i6=l

Pr(X i(t) > δx,X l(t) >
x

2
)

=

2∑

i=1

Pr(Xi(t) > (1 − δ)x) +
∑

i,l=1,2;i6=l

P (Xi(t) > δx)Pr(X l(t) >
x

2
)

≤ (1 + δ)

2∑

i=1

Λi(t)νi(ci)F i((1− δ)x)

+ (1 + δ)2Λ1(t)ν1(c1)Λ2(t)ν2(c2)
(
F 1(δx)F 2(

x

2
) + F 2(δx)F 1(

x

2
)
)
,

where at the last step we use (5.1) three times.
To estimate (5.8), we should point out that

Λ1(t)ν1(c1)Λ2(t)ν2(c2)
(
F 1(δx)F 2(

x
2 ) + F 2(δx)F 1(

x
2 )
)

2∑
i=1

Λi(t)νi(ci)F i((1− δ)x)

(5.9)

≤ max
{

Λ1(t)ν1(c1)Λ2(t)ν2(c2)F 1(δx)F 2(
x
2 )

Λ1(t)ν1(c1)F 1((1−δ)x)
,

Λ1(t)ν1(c1)Λ2(t)ν2(c2)F 2(δx)F 1(
x
2 )

Λ2(t)ν2(c2)F 2((1−δ)x)

}

= max
{

Λ2(t)ν2(c2)F 2(
x
2 )F 1(δx)

F 1((1−δ)x)
,

Λ1(t)ν1(c1)F 1(
x
2 )F 2(δx)

F 2((1−δ)x)

}
.
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Furthermore, since Fi ∈ C ⊂ D, for any δ ∈ (0, 1
2 ), it follows from (5.5) that

sup
t→∞

sup
x≥γΛ2(t)

Λi(t)νi(ci)F i(
x
2 )F j(δx)

F j((1− δ)x)
≤ δ.(5.10)

Plugging (5.9) and (5.10) into (5.8) and letting δ → 0 yields that, uniformly
for x ≥ γΛ2(t),

Pr(X(2, t)−
2∑

i=1

Λi(t)(µiνi(ci)− di) > x) .

2∑

i=1

Λi(t)νi(ci)F i(x).(5.11)

A combination of (5.7) and (5.11) shows that (2.8) holds for n = 2.
Now suppose that (2.8) holds for n − 1, that is, for x ≥ γΛn−1(t) and

sufficiently large t,

Pr(X(n− 1, t)−
n−1∑

i=1

Λi(t)(µiνi(ci)− di) > x) ≥ (1− δ)
n−1∑

i=1

Λi(t)νi(ci)F i(x).

(5.12)

Then, we prove that (2.8) holds for n. As for the case (5.4), by (5.12), it holds
uniformly for x ≥ γΛn(t) and sufficiently large t that

Pr(X(n, t)−
n∑

i=1

Λi(t)(µiνi(ci)− di) > x)(5.13)

= Pr(

n∑

i=1

Xi(t) > x)

≥ Pr(

n−1∑

i=1

Xi(t) > (1 + δ)x)Pr(Xn(t) > −δx)

+ Pr(Xn(t) > (1 + δ)x)Pr(

n−1∑

i=1

Xi(t) > −δx)

− Pr(

n−1∑

i=1

X i(t) > (1 + δ)x)Pr(Xn(t) > (1 + δ)x)

≥ (1− δ)3
n−1∑

i=1

Λi(t)νi(ci)F i((1 + δ)x) + (1− δ)n+1Λn(t)νn(cn)F n((1 + δ)x)

− (1− δ)2
n−1∑

i=1

Λi(t)νi(ci)F i((1 + δ)x)Λn(t)νn(cn)F n((1 + δ)x).

In (5.13), it is necessary to mention that

Pr(

n∑

i=1

X i(t) > −δx) ≥ (1 − δ)n+1.(5.14)
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Actually, by (5.3), the assertion holds for n = 1. By the induction hypothesis
we assume that (5.14) holds for n− 1 and we prove it for n. For some positive
constant v(v < δ), it holds that

Pr(

n∑

i=1

Xi(t) > −δx) ≥ Pr(

n−1∑

i=1

Xi(t) > (v − δ)x)Pr(Xn(t) > −vx)

+ Pr(

n−1∑

i=1

X i(t) > −vx)Pr(Xn(t) > (v − δ)x)

− Pr(

n−1∑

i=1

X i(t) > (v − δ)x)Pr(Xn(t) > (v − δ)x)

≥ (1− δ)n+1.

Therefore, letting δ → 0, it holds uniformly for x ≥ γΛn(t), t → ∞ that

Pr(X(n, t)−
n∑

i=1

Λi(t)(µiνi(ci)− di) > x) &

n∑

i=1

Λi(t)νi(ci)F i(x).(5.15)

On the other hand, as for the case (5.8), it holds uniformly for x ≥ γΛn(t),
t → ∞ that

Pr(X(n, t)−
n∑

i=1

Λi(t)(µiνi(ci)− di) > x) = Pr(

n∑

i=1

Xi(t) > x)(5.16)

≤
n∑

i=1

Pr(X i(t) > (1− δ)x) +

n∑

i=1

∑

j 6=i

Pr(Xi(t) >
x

n
)Pr(Xj(t) >

δx

n
)

≤ (1 + δ)

n∑

i=1

Λi(t)νi(ci)F i((1− δ)x)

+ (1 + δ)2
n∑

i=1

Λi(t)νi(ci)F i(
x

n
)
∑

j 6=i

Λj(t)νj(cj)F j(
δx

n− 1
)

∼
n∑

i=1

Λi(t)νi(ci)F i(x),

where all the inequalities except the last two are obtained by (5.3) and the last
step is due to Lemma 3.1 and the arbitrariness of δ. Combining (5.15) and
(5.16), the proof of Theorem 2.3 is accomplished.
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