• Title/Summary/Keyword: Poisson′s Ratio

Search Result 438, Processing Time 0.031 seconds

Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves (P파 초동주시와 표면파 분산곡선 역산을 통한 흙댐의 이상대 탐지)

  • Kim, K.Y.;Jeon, K.M.;Hong, M.H.;Park, Young-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

Free vibration analysis of FG plates resting on the elastic foundation and based on the neutral surface concept using higher order shear deformation theory

  • Benferhat, Rabia;Daouadji, Tahar Hassaine;Mansour, Mohamed Said;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1033-1048
    • /
    • 2016
  • An analytical solution based on the neutral surface concept is developed to study the free vibration behavior of simply supported functionally graded plate reposed on the elastic foundation by taking into account the effect of transverse shear deformations. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain obtained by using a new refined shear deformation theory. The foundation is described by the Winkler-Pasternak model. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power law formulation, and the Poisson ratio is held constant. The equation of motion for FG rectangular plates resting on elastic foundation is obtained through Hamilton's principle. Numerical examples are provided to show the effect of foundation stiffness parameters presented for thick to thin plates and for various values of the gradient index, aspect and side to thickness ratio. It was found that the proposed theory predicts the fundamental frequencies very well with the ones available in literature.

Small Strain Measurements of Sands in Plane Strain Compression (평면 변형률 압축상태에서의 모래의 미소 변형률 측정)

  • 박춘식;장정욱
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.27-46
    • /
    • 1994
  • It has been demonstrated in plane strain compression tests performed on dense Toyoura sand and Silver Leighton Buzzard sand, that the newly developed instrumentation for small strain measurements was capable of measuring the altering stiffness of sands for a wide range of shear strain from ($10^{-6}$to $10^{-2}$. It was found that for the range of shear strain($\gamma$) from $10^{-5}$ to those at peak, the Rowe's stressiilatancy relation seemed to be a good approximation for Toyoura sand and Silver Leighton Buzzard sand. However, the value of K and Poisson's ratio(at elastic range:${\nu}_{psc}^e$) varied with sand types. It was also found that the value of ${\nu}_{psc}^e$ and stress -dilatancy relation was irrespective of overconsolidation ratio(OCR).

  • PDF

Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller

  • Zare, Reza;Najaafi, Neda;Habibi, Mostafa;Ebrahimi, Farzad;Safarpour, Hamed
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.469-480
    • /
    • 2020
  • This is the first research on the smart control and vibration analysis of a Graphene nanoplatelets (GPLs) Reinforced Composite (GPLRC) porous cylindrical shell covered with piezoelectric layers as sensor and actuator (PLSA) in the framework of numerical based Generalized Differential Quadrature Method (GDQM). The stresses and strains are obtained using the First-order Shear Deformable Theory (FSDT). Rule of the mixture is employed to obtain varying mass density and Poisson's ratio, while the module of elasticity is computed by modified Halpin-Tsai model. The external voltage is applied to sensor layer and a Proportional-Derivative (PD) controller is used for sensor output control. Governing equations and boundary conditions of the GPLRC cylindrical shell are obtained by implementing Hamilton's principle. The results show that PD controller, length to radius ratio (L/R), applied voltage, porosity and weight fraction of GPL have significant influence on the frequency characteristics of a porous GPLRC cylindrical shell. Another important consequence is that at the lower value of the applied voltage, the influence of the smart controller on the frequency of the micro composite shell is much more significant in comparison with the higher ones.

Free vibration analysis of FG composite plates reinforced with GPLs in thermal environment using full layerwise FEM

  • Mohammad Sadegh Tayebi;Sattar Jedari Salami;Majid Tavakolian
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.445-459
    • /
    • 2023
  • The current investigation is the first endeavor to apply the full layerwise finite element method (FEM) in free vibration analysis of functionally graded (FG) composite plates reinforced with graphene nanoplatelets (GPLs) in thermal environment. Unlike the equivalent single-layer (ESL) theories, the layerwise FEM focuses on all three-dimensional (3D) effects. The GPLs weight fraction is presumed invariable in each layer but varies through the plate thickness in a layerwise model. The modified Halpin-Tsai model is employed to acquire the effective Young's modulus. The rule of mixtures is applied to specify the effective Poisson's ratio and mass density. First, the current method is validated by comparing the numerical results with those stated in the available works. Next, a thorough numerical study is performed to examine the influence of various factors involving the pattern of distribution, weight fraction, geometry, and size of GPLs, together with the thickness-to-span ratio, thermal environment, and boundary conditions of the plate, on its free vibration behaviors. Numerical results demonstrate that employing a small percentage of GPL as reinforcement considerably grows the natural frequencies of the pure epoxy. Also, distributing more square-shaped GPLs, involving a smaller amount of graphene layers, and vicinity to the upper and lower surfaces make it the most efficient method to enhance the free vibration behaviors of the plate.

Two-Dimensional Analysis of Cross-ply Laminates with Transverse Cracks Based on the Assumed Crack Opening Deformation (균열열림변형을 고려한 모재균열이 있는 직교적층판의 2차원 해석)

  • 이재화;홍창선;한영명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2002-2014
    • /
    • 1991
  • A refined two-dimensional analysis method, taking into account the crack opening deformation, is proposed for the evaluation of stress distributions in transverse cracked cross-ply laminates. The interlaminar stresses which play an important role in laminate failure are evaluated using the concept of interface layer. A series expansion of the displacements is employed and the thermal residual stresses and Poisson's effects in the laminated are taken into consideration in the formulation. The stress distributions are compared with finite element results. The proposed method represents well the characteristics of the stress distributions. The through-the-thickness variation of the stress distribution is remarkable near the transverse crack due to the crack opening deformation. The interlaminar stresses have significant values at the transverse crack tip and the proposed analysis can be applied as a basis for the prediction of the induced delamination onset by using appropriate failure criteria.

Minimum Safety Factor for Evaluation of Critical Buckling Pressure of Zirconium Alloy Tube (지르코늄 합금 관의 임계좌굴 압력 산정을 위한 최소안전율)

  • Kim, Hyung-Kyu;Kim, Jae-Yong;Yoon, Kyung-Ho;Lee, Young-Ho;Lee, Kang-Hee;Kang, Heung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • We consider the uncertainty in the elastic buckling formula for a thin tube. We take into account the measurement uncertainty of Young's modulus and Poisson's ratio and the tolerance of the tube thickness and diameter. Elastic buckling must be prohibited for a thin tube such as a nuclear fuel rod that must satisfy a self-stand criterion. Since the predicted critical buckling pressure overestimated that found in the experiment, the determination of the minimum safety factor is crucial. The uncertainty in each parameter (i.e., Young's modulus, Poisson's ratio, thickness, and diameter) is mutually independent, so the safety factor is evaluated as the sum of the inverse of each uncertainty. We found that the thickness variation greatly affects the uncertainty. The minimum safety factor of a thin tube of Zirconium alloy is evaluated as 1.547 for a thickness of 0.87 mm and 3.487 for a thickness of 0.254 mm.

AN IN-SITU YOUNG'S MODULUS MEASUREMENT TECHNIQUE FOR NUCLEAR POWER PLANTS USING TIME-FREQUENCY ANALYSIS

  • Choi, Young-Chul;Yoon, Doo-Byung;Park, Jin-Ho;Kwon, Hyun-Sang
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.327-334
    • /
    • 2009
  • Elastic wave is one of the most useful tools for non-destructive tests in nuclear power plants. Since the elastic properties are indispensable for analyzing the behaviors of elastic waves, they should be predetermined within an acceptable accuracy. Nuclear power plants are exposed to harsh environmental conditions and hence the structures are degraded. It means that the Young's modulus becomes unreliable and in-situ measurement of Young's modulus is required from an engineering point of view. Young's modulus is estimated from the group velocity of propagating waves. Because the flexural wave of a plate is inherently dispersive, the group velocity is not clearly evaluated in temporal signal analysis. In order to overcome such ambiguity in estimation of group velocity, Wigner-Ville distribution as the time-frequency analysis technique was proposed and utilized. To verify the proposed method, experiments for steel and acryl plates were performed with accelerometers. The results show good estimation of the Young's modulus of two plates.

Modified Lysmer's analog model for two dimensional mat settlements under vertically uniform load

  • Chang, Der-Wen;Hung, Ming-He;Jeong, Sang-Seom
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-231
    • /
    • 2021
  • A two dimensional model of linearly elastic soil spring used for the settlement analysis of the flexible mat foundation is suggested in this study. The spring constants of the soils underneath the foundation were modeled assuming uniformly vertical load applied onto the foundation. The soil spring constants were back calculated using the three-dimensional finite element analysis with Midas GTS NX program. Variation of the soil spring constants was modeled as a two-dimensional polynomial function in terms of the normalized spatial distances between the center of foundation and the analytical points. The Lysmer's analog spring for soils underneath the rigid foundation was adopted and calibrated for the flexible foundation. For validations, the newly proposed soil spring model was incorporated into a two dimensional finite difference analysis for a square mat foundation at the surface of an elastic half-space consisting of soft clays. Comparative study was made for elastic soils where the shear wave velocity is 120~180 m/s and the Poisson's ratio varies at 0.3~0.5. The resulting foundation settlements from the two dimensional finite difference analysis with the proposed soil springs were found in good agreement with those obtained directly from three dimensional finite element analyses. Details of the applications and limitations of the modified Lysmer's analog springs were discussed in this study.