• Title/Summary/Keyword: Point to Mesh

Search Result 361, Processing Time 0.023 seconds

Recognition of Facial Expressions of Animation Characters Using Dominant Colors and Feature Points (주색상과 특징점을 이용한 애니메이션 캐릭터의 표정인식)

  • Jang, Seok-Woo;Kim, Gye-Young;Na, Hyun-Suk
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.375-384
    • /
    • 2011
  • This paper suggests a method to recognize facial expressions of animation characters by means of dominant colors and feature points. The proposed method defines a simplified mesh model adequate for the animation character and detects its face and facial components by using dominant colors. It also extracts edge-based feature points for each facial component. It then classifies the feature points into corresponding AUs(action units) through neural network, and finally recognizes character facial expressions with the suggested AU specification. Experimental results show that the suggested method can recognize facial expressions of animation characters reliably.

Simple priority setting method for Screening in public health assessment of waste incineration facilities (폐기물 소각시설 주변 환경보건평가 중 스크리닝 단계에서의 우선순위 선정기법에 관한 연구)

  • Kim, Gi Young;Hong, Seung Cheol
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.813-821
    • /
    • 2012
  • Environmental and public health concern for the emission of air pollutants from burn-up process in waste incineration plants located in the vicinity of living environment was increased during the past decade. The purpose of this study was to suggest of the simple and rapid method of priority setting model for the decision of full-scale public health assessment. This method was consists of total 5-step. Step 1 was "secure the satellite map" and we can use the satellite map which serves from the website such as NAVER Co. Step 2 was "drawing mesh on the map" for catch the point of occupation of environmental sensitivity facilities, and step 3 was "identification and sorting of the facilities", Step 4 was "setting of weight" using the "weighted linear combination (WLC) method". Finally, all facility was sorted by score. As a result, we can set a priority of 145 facilities based on 177 facilities which managed in local government. Facilities in Seoul metropolitan area was high rank in priority list. On the other side, Facilities located at the country or rural area was low rank because of low occupation of the house and the environmental sensitivity facilities such as kindergarten, elementary school, and hospital. In this study, we suggested simple and rapid method that using for screening procedure of public health assessment.

Probabilistic seismic hazard assessment of Sanandaj, Iran

  • Ghodrati Amiri, Gholamreza;Andisheh, Kaveh;Razavian Amrei, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.563-581
    • /
    • 2009
  • In this paper, the peak horizontal ground acceleration over the bedrock (PGA) is calculated by a probabilistic seismic hazard assessment (PSHA). For this reason, at first, all the occurred earthquakes in a radius of 200 km of Sanandaj city have been gathered. After elimination of the aftershocks and foreshocks, the main earthquakes were taken into consideration to calculate the seismic parameters (SP) by Kijko (2000) method. The seismotectonic model of the considered region and the seismic sources of the region have been modeled. In this research, Sanandaj and its vicinity has been meshed as an 8 (vertical lines) * 10 (horizontal lines) and the PGA is calculated for each point of the mesh using the logic tree method and the five attenuation relationships (AR) with different weighted coefficient. These calculations have been performed by the Poisson distribution of four hazard levels. Then by using it, four regional maps of the seismic hazard regions have been provided for Sanandaj and its vicinity. The results show that the maximum and minimum value of PGA for the return periods of 75, 225, 475, 2475 years are (0.114, 0.074) (0.157, 0.101), (0.189, 0.121) and (0.266, 0.170), respectively.

Two-Dimensional Simulation of MOS Transistors Using Numerical Method (수치해석 방법에 의한 2차원적인 MOS Transistor의 시뮬레이션에 관한 연구)

  • 정태성;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.93-101
    • /
    • 1985
  • A two-dimensional numerical analysis progranl, called SOMOS ( simulation of MO5 transistors), has been developed for the simulation of MOSFET's with various channel lengths and bias conditions. The finite difference approximation of the fundamental equa-tions are formulated using Newton's method for Poisson's equation and the divergence theorem for the continuity equation. For the solution of the lincariBed equations, SOR (successive over relaxation) method and Gummel's algorithm have been employed, The total simulation time for oar operating point is varying between 30 sec. and 4 min. on VAX 11/780 depending on bias conditions, The nonuniform mesh was generated and refined automatically to account for various bias values and the potential distributions.

  • PDF

Semi-Automatic Method for Constructing 2D and 3D Indoor GIS Maps based on Point Clouds from Terrestrial LiDAR (지상 라이다의 점군 데이터를 이용한 2차원 및 3차원 실내 GIS 도면 반자동 구축 기법 개발)

  • Hong, Sung Chul;Jung, Jae Hoon;Kim, Sang Min;Hong, Seung Hwan;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2013
  • In rapidly developing urban areas that include high-rise, large, and complex buildings, indoor and outdoor maps in GIS become a basis for utilizing and sharing information pertaining to various aspects of the real world. Although an indoor mapping has gained much attentions, research efforts are mostly in 2D and 3D modeling of terrain and buildings. Therefore, to facilitate fast and accurate construction of indoor GIS, this paper proposes a semi-automatic method consisting of preprocessing, 2D mapping, and 3D mapping stages. The preprocessing is designed to estimate heights of building interiors and to identify noise data from point clouds. In the 2D mapping, a floor map is extracted with a tracing grid and a refinement method. In the 3D mapping, a 3D wireframe model is created with heights from the preprocessing stage. 3D mesh data converted from noise data is combined with the 3D wireframe model for detail modeling. The proposed method was applied to point clouds depicting a hallway in a building. Experiment results indicate that the proposed method can be utilized to construct 2D and 3D maps for indoor GIS.

Generation of Multi-view Images Using Depth Map Decomposition and Edge Smoothing (깊이맵의 정보 분해와 경계 평탄 필터링을 이용한 다시점 영상 생성 방법)

  • Kim, Sung-Yeol;Lee, Sang-Beom;Kim, Yoo-Kyung;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.471-482
    • /
    • 2006
  • In this paper, we propose a new scheme to generate multi-view images utilizing depth map decomposition and adaptive edge smoothing. After carrying out smooth filtering based on an adaptive window size to regions of edges in the depth map, we decompose the smoothed depth map into four types of images: regular mesh, object boundary, feature point, and number-of-layer images. Then, we generate 3-D scenes from the decomposed images using a 3-D mesh triangulation technique. Finally, we extract multi-view images from the reconstructed 3-D scenes by changing the position of a virtual camera in the 3-D space. Experimental results show that our scheme generates multi-view images successfully by minimizing a rubber-sheet problem using edge smoothing, and renders consecutive 3-D scenes in real time through information decomposition of depth maps. In addition, the proposed scheme can be used for 3-D applications that need the depth information, such as depth keying, since we can preserve the depth data unlike the previous unsymmetric filtering method.

3D Head Modeling using Depth Sensor

  • Song, Eungyeol;Choi, Jaesung;Jeon, Taejae;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2015
  • Purpose We conducted a study on the reconstruction of the head's shape in 3D using the ToF depth sensor. A time-of-flight camera (ToF camera) is a range imaging camera system that resolves distance based on the known speed of light, measuring the time-of-flight of a light signal between the camera and the subject for each point of the image. The above method is the safest way of measuring the head shape of plagiocephaly patients in 3D. The texture, appearance and size of the head were reconstructed from the measured data and we used the SDF method for a precise reconstruction. Materials and Methods To generate a precise model, mesh was generated by using Marching cube and SDF. Results The ground truth was determined by measuring 10 people of experiment participants for 3 times repetitively and the created 3D model of the same part from this experiment was measured as well. Measurement of actual head circumference and the reconstructed model were made according to the layer 3 standard and measurement errors were also calculated. As a result, we were able to gain exact results with an average error of 0.9 cm, standard deviation of 0.9, min: 0.2 and max: 1.4. Conclusion The suggested method was able to complete the 3D model by minimizing errors. This model is very effective in terms of quantitative and objective evaluation. However, measurement range somewhat lacks 3D information for the manufacture of protective helmets, as measurements were made according to the layer 3 standard. As a result, measurement range will need to be widened to facilitate production of more precise and perfectively protective helmets by conducting scans on all head circumferences in the future.

Physiological Responses and Subjective Sensations of Human Wearing Soccer Wear of Different Materials and Designs (축구복 소재와 디자인이 인체생리반응과 주관적 감각에 미치는 영향)

  • Choi Jeong-Wha;Kim So-Young;Jeon Tae-Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.1 s.139
    • /
    • pp.35-45
    • /
    • 2005
  • The purpose of this study was to evaluate thermal properties of soccer wear with different materials and designs. As a beginning step, the questionnaire survey about the actual condition of soccer wears was conducted. with the results of the questinnaire, two soccer wears with new material and design that were improved in tactile sensations, absorption and ventilation were developed. We evaluated thermal and subjective responses of subjects wearing Korea national soccer team uniform in 1998 World Cup (Uniform 98), soccer wear with new material and same design(New II) and with new material and new design(New I). New I was made with mesh in armhole for improving ventilation. Rectal temperature, skin temperature, clothing microclimate, and heart rate were measured in climatic chamber test(twelve times) and field test(eighteen times). The results were as follows. 1. As the results of the climatic chamber test, rectal temperature was lower in New I and New II than Uniform98, and mean skin temperature was lower in New I than Uniform 98 and New II. Heart rate was lower in New I than New II, and total body weight loss and local sweating were not significantly different by soccer wears. 2. As the results of the field test, rectal temperature was lower in New I than Uniform98 and New II. Mean skin temperature was lower in New II than Uniform98 and New I. Clothing microclimate temperature was lower in New II than Uniform98 and New 1, and clothing microclimate humidity was lower in New I, New II than Uniform 98. Heart rate was lower in New I than Uniform 98, New II and total body weight loss and local sweating were lower in New I, New II than Uniform 98. In conclusion, New I using new design using mesh in armhole and new material using sweat absorbent finishing was excellent from the point of view of physical responses, ventilation and sweat absorption.

A Study of the Landscape Preference for 'Oreu'm by Analyses of Features & Visual Elements ("오름"의 형태와 시각량 분석을 통한 경관선호성 평가)

  • Kim, Sang-Beom;Sim, Woo-Kyung;Rho, Jae-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.1 s.120
    • /
    • pp.48-58
    • /
    • 2007
  • The purpose of this study was not only to clearly examine the features of the scenery and visual elements of Oreum (parasitic cones) but also to investigate primary factors in landscape preferences for these cones. This study further attempted to gain basic information for examining the preservation of Oreum in regards to the influence of scenery on the general public. A Multiple Regression Analysis was used for this study for which the independent variable was the area ratio of the fore-, mid-, and background of the view under the feature element and the structure of the scenery at the Oreum. The dependent variables were the preference value, the number of summits, and the highest altitude of the Oreum. All but the highest inclination were positive variables. The area ratio of the Oreum was found to be the most important variable. The area of sky and the area of the distant scenery were shown to be positive explanation variables, while the area to the fore of the view and the area to the middle of the view were shown as negative explanation variable. In the preference for Oreum scenery, which has a high visibility and is clearly outlined against the skyline, it was found that as the hindrance element of visibility near to a visual point or the area ratio increased, the preference for the Oreum scenery decreased.

Crack Analysis using Constrained Delaunay Triangulation Crack Mesh Generation Method (Constrained Delaunay Triangulation 균열 요소 생성 기법을 이용한 균열 해석)

  • Yeounhee Kim;Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.17-26
    • /
    • 2024
  • Aircraft engines are exposed to high temperatures, high pressures, and stress caused by the rotation of the turbine shaft during flight. These loads can result in microcracks both on the inside and outside surfaces of the structure. Consequently, this can lead to structural defects and negatively impact the lifespan of the parts. To proactively prevent these defects, a finite element analysis is carried out to identify cracks. However, this process is time-consuming and requires significant effort due to the repetitive nature of crack modeling. This study aims to develop a crack modeling method based on the finite element model. To achieve this, the Constrained Delaunay Triangulation (CDT) technique is employed to triangulate the space while considering limitations on point connections. The effectiveness of this method is validated by comparing stress intensity factors for semi-elliptical cracks in plates and cylindrical vessels. This approach proves to be a valuable tool for crack analysis studies.