• 제목/요약/키워드: Point load strength

검색결과 446건 처리시간 0.024초

3차원 X-ray CT 영상을 이용한 화성암 불균질 지수와 역학적 특성과의 상관관계에 대한 연구 (A Study on Correlation between Heterogeneity Index and Mechanical Properties of Igneous Rocks using 3D X-ray Computed Tomography Image)

  • 정연종;김광염;윤태섭
    • 터널과지하공간
    • /
    • 제27권5호
    • /
    • pp.333-342
    • /
    • 2017
  • 본 연구에서는 국내의 다양한 화성암에 대해 내부구조의 불균질성을 정량화하고, 이와 탄성파속도 및 점하중강도간의 상관관계를 분석하였다. 3차원 X-ray Computed Tomography(CT)를 통해 암석 시편 내부 구조에 대한 정보를 획득하였으며, 3차원 영상에 통계적 기법을 적용하여 뷸균질성 대표계수(representative unit length, LR)를 계산하였다. 또한 암석의 탄성파 속도 및 점하중강도와 LR간의 상관관계로부터 암석의 역학적 특성치를 예측하는 추정식을 제안하였다. 본 연구에서 제안한 방법을 통해 3차원 X-ray 영상에 기반한 내부 특성 분석값을 이용해 실내실험을 수행하지 않고도 암석의 역학적 물성을 평가할 수 있는 간접적인 인자를 도출할 수 있는 가능성을 확인하였다.

Mechanics of the slaking of shales

  • Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • 제3권3호
    • /
    • pp.219-231
    • /
    • 2011
  • Waste fills resulting from coal mining should consist of large, free-draining sedimentary rocks fragments. The successful performance of these fills is related to the strength and durability of the individual rock fragments. When fills are made of shale fragments, some fragments will be durable and some will degrade into soil particles resulting from slaking and inter-particle point loads. The degraded material fills the voids between the intact fragments, and results in settlement. A laboratory program with point load and slake durability tests as well as thin section examination of sixty-eight shale samples from the Appalachian region of the United States revealed that pore micro-geometry has a major influence on degradation. Under saturated and unsaturated conditions, the shales absorb water, and the air in their pores is compressed, breaking the shales. This breakage was more pronounced in shales with smooth pore boundaries and having a diameter equal to or smaller than 0.060 mm. If the pore walls were rough, the air-pressure breaking mechanism was not effective. However, pore roughness (measured by the fractal dimension) had a detrimental effect on point load resistance. This study indicated that the optimum shales to resist both slaking as well as point loads are those that have pores with a fractal dimension equal to 1.425 and a diameter equal to or smaller than 0.06 mm.

팽창콘크리트를 사용한 RC 슬래브의 휨거동에 관한 연구 (Flexural Behavior of RC Slabs with Expansive Concrete)

  • 박홍용;김철영;최익창;이호석;배상욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.585-588
    • /
    • 1999
  • This study is performed to verify the effect of CSA expansive additives for concrete by material properties test and 4 point-bendig test of RC slabs. The result shows that the variations of compress strength, bending strength, and modulus of elasticity of expansive concrete are the same as those of plain concrete. And the crack load of RC slabs with expansive concrete are increased in comparision with that of plain concrete, but the ultimate strength of RC slabs with expansive concrete is decreased.

  • PDF

셰일의 강도이방성 특성 및 RQD결정에 관한 연구 ((A Study on Strength Anisotropy characteristic and Suggested Methods for Determining RQD as for Shale))

  • 이종규;이수곤;장서만;손경철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.103-110
    • /
    • 2003
  • This study is as for shale that attract recently geotechnical engineer more and more. like sedimentary rocks and metamorpic rocks, shales have many problem with anisotropy for stength and deformation and they have many problems with quick weathering progress and differential weathering of alternate bedding. In foreign countries, many renowned schalors, like Jaeger(1960),McLamore,Gray(1967),Donath(1972),Nova(1980),Hoek&Brown(1980),Ranamurthy(1985), have already studied for a variety of characteristic and announced high level results of their studies. In domestic also, there are many scholars who have announced high level research papers for shale. this study is a part of these stream. and this study not only analyzed strength anisotropy characteristic along with direction of testing(two-direction) by using point-load test(log-log method) but also compared uniaxial strength between the maximum saturated and dried condition. In this study, we also conducted slaking test. these results of slaking test show weathering characteristic of shales. also, we made the most of field data that obtained during slope stability project and we noticed that RQD measured in the field is much differ from drilled core RQD. In order to come close two different value or access to reality, we suggest new RQD method that artificially reduce RQD by separating core with light hand force.

  • PDF

절취사면의 암질평가사례 (Case Study of Rock Mass Classifications in Slopes)

  • 신희순;한공창;선우춘;송원경;신중호;박찬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.109-116
    • /
    • 2000
  • Rippability refers to the ease of excavation by construction equipment. Since it is related to rock quality in terms of hardness and fracture density, which may be measured by seismic refraction surveys, correlations have been made between rippability and seismic P wave velocities. The 1-channel signal enhancement seismograph(Bison, Model 1570C) was used to measure travel time of the seismic wave through the ground, from the source to the receiver. The seismic velocity measurement was conducted with 153 lines at 5 rock slopes of Chungbuk Youngdong area. Schmidt rebound hardness test were conducted with 161 points on rock masses and the point load test also on 284 rock samples. The uniaxial compressive strength and seismic wave velocity of 60 rock specimens were measured in laboratory. These data were used to evaluate the rock quality of 5 rock slopes.

  • PDF

Flexural properties of a light-cure and a self-cure denture base materials compared to conventional alternatives

  • Mumcu, Emre;Cilingir, Altug;Gencel, Burc;Sulun, Tonguc
    • The Journal of Advanced Prosthodontics
    • /
    • 제3권3호
    • /
    • pp.136-139
    • /
    • 2011
  • PURPOSE. A new light curing urethane dimethacrylate and a cold curing resin with simpler and faster laboratory procedures may have even improved flexural properties. This study investigated the 3-point flexural strengths and flexural moduli of two alternate base materials. MATERIALS AND METHODS. A cold curing resin (Weropress) and a light curing urethane dimethacrylate base material (Eclipse). Along with Eclipse and Weropress, a high impact resin (Lucitone199) and three conventional base materials (QC 20, Meliodent and Paladent 20) were tested. A 3-point bending test was used to determine the flexural strengths and flexural moduli. The mean displacement, maximum load, flexural modulus and flexural strength values and standard deviations for each group were analyzed by means of one-way analysis of variance (ANOVA) (with mean difference significant at the 0.05 level). Post hoc analyses (Scheffe test) were carried out to determine the differences between the groups at a confidence level of 95%. RESULTS. Flexural strength, displacement and force maximum load values of Eclipse were significantly different from other base materials. Displacement values of QC 20 were significantly different from Lucitone 199 and Weropress. CONCLUSION. The flexural properties and simpler processing technique of Eclipse system presents an advantageous alternative to conventional base resins and Weropress offers another simple laboratory technique.

Ultimate strength behavior of steel plate-concrete composite slabs: An experimental and theoretical study

  • Wu, Lili;Wang, Hui;Lin, Zhibin
    • Steel and Composite Structures
    • /
    • 제37권6호
    • /
    • pp.741-759
    • /
    • 2020
  • Steel plate-concrete composite slabs provide attractive features, such as more effective loading transfer, and more cost-effective stay-in-place forms, thereby enabling engineers to design more high-performance light structures. Although significant studies in the literatures have been directed toward designing and implementing the steel plate-concrete composite beams, there are limited data available for understanding of the composite slabs. To fill this gap, nine the composite slabs with different variables in this study were tested to unveil the impacts of the critical factors on the ultimate strength behavior. The key information of the findings included sample failure modes, crack pattern, and ultimate strength behavior of the composite slabs under either four-point or three-point loading. Test results showed that the failure modes varied from delamination to shear failures under different design factors. Particularly, the shear stud spacing and thicknesses of the concrete slabs significantly affected their ultimate load-carrying capacities. Moreover, an analytical model of the composite slabs was derived for determining their ultimate load-carrying capacity and was well verified by the experimental data. Further extensive parametric study using the proposed analytical methods was conducted for a more comprehensive investigation of those critical factors in their performance. These findings are expected to help engineers to better understand the structural behavior of the steel plate-concrete composite slabs and to ensure reliability of design and performance throughout their service life.

Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement

  • Ozkilic, Yasin Onuralp;Gemi, Lokman;Madenci, Emrah;Aksoylu, Ceyhun;Kalkan, İlker
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.193-204
    • /
    • 2022
  • The need for establishing the contribution of pultruded FRP encasements and additional FRP wraps around these encasements to the shear strength and load-deflection behavior of reinforced concrete beams is the main motivation of the present study. This paper primarily focuses on the effect of additional wrapping around the composite beam on the flexural and shear behavior of the pultruded GFRP (Glass Fiber Reinforced Polymer) beams infilled with reinforced concrete, taking into account different types of failure according to av/H ratio (arch action, shear-tension, shear-compression and pure bending). For this purpose, nine hybrid beams with variable shear span-to-depth ratio (av/H) were tested. Hybrid beams with 500 mm, 1000 mm, and 1500 mm lengths and cross-sections of 150x100 mm and 100x100 mm were tested under three-point and four-point loading. Based on the testing load-displacement relationship, ductility ratio, energy dissipation capacity of the beams were evaluated with comprehensive macro damage analysis on pultruded GFRP profile and GFRP wrapping. The GFRP wraps were established to have a major contribution to the composite beam ductility (90-125%) and strength (40-75%) in all ranges of beam behavior (shear-dominated or dominated by the coupling of shear and flexure). The composite beams with wraps were showns to reach ductilities and strength values of their counterparts with much greater beam depth.

한반도 중부권 지각물질의 구조와 물성연구(2) : 퇴적암류 코아시료의 탄성파 속도와 점재하 강도 비교 (Structure and physical properties of Earth Crust material in the Middle of Korean Peninsula(2) : Comparison between elastic Velocity and point-load of core specimen of sedimentary rocks.)

  • 송무영;황인선
    • 지질공학
    • /
    • 제3권1호
    • /
    • pp.21-37
    • /
    • 1993
  • 석회암, 사암과 셰일의 퇴적암 코아시료를 대상으로 암석의 비중, 공극률, 함수율 등을 구하고 탄성파 전파 속도와 점재하 강도 지수를 측정하였다. 이들 암석물성 사이의 관계로부터 석회암에 대한 밀도와 탄성파 속도의 관계는 $Vp=4085d^2-20747d+303,{\;}V_s=3899d^2-21442d+318$의 다소 곡선 경향을 나타낸다. 또한 밀도가 높은 셰일의 탄성파 속도가 사암에서보다 작으며 이는 셰일의 층리 영향띠문인 것으로 보인다. 석회암, 사암, 셰일의 P파 속도와 S파 소ㄷ도는 대체로 직선 양상을 보여주며 각 관계식은 석회암에서는 $V_s=0.26V_p+1041.6m/sec,{\;}사암은{\;}V_s=0.43V_p+424.2m/sec$, 셰일에서는 r= 0.86으로 나타났다. 석회암에 대한 점재하 강도 시험에 의하면 점재하 강도 이방성을 시료가 다소 호상구조를 보이더라도 뚜렷하지 않았다. $30^{\circ}-60^{\circ}$내외의 변화를 보이는 층리면 경사각은 직경방향과 축방향의 점재하 지수에 큰 영향을 미치지 않은 것으로 생각된다. 점재하 강도 실험결과 점재하강도 지수가 증가하면 P파 속도도 증가하지만 상관관계가 뚜렷하지 않았다.

  • PDF