• 제목/요약/키워드: Point load strength

검색결과 449건 처리시간 0.029초

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제12권1호
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Electrode Life Test of Resistance Spot Welding on Mg Alloy Using Dome Type Electrode (돔형 전극을 사용한 마그네슘 합금 저항 점용접의 전극 수명 평가)

  • Choi, Dong-Soon;Hwang, In-Sung;Kim, Dong-Cheol;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.27-31
    • /
    • 2013
  • Magnesium alloy is used on parts of aircraft and electronic equipment because of the highest specific strength among the common metal materials. Recently, studies about appling magnesium alloy sheet to automotive bodies are on the increase rapidly. For application to automotive bodies, researches about characteristics of resistance spot welding of magnesium alloy sheet are essential. Magnesium alloy has low boiling point, so getting sound bead shape is difficult when appling varies welding processes. Resistance spot welding is also particular about setting optimum welding conditions because of spatter generation, pores and cracks occurrence in nugget. And life of electrodes is very short because of alloying with copper that main material of electrodes. This requires frequent dressing and replacement of electrodes and decrease in productivity of resistance spot welding on magnesium alloy. Therefore in this study, for effective analysis of changes in tensile shear load and nugget size during electrode life test, evaluate detail characteristics of resistance spot welding on magnesium alloy sheet using dome type electrode.

Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Ibrahim, M.H.W.
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.299-308
    • /
    • 2020
  • This study aims to carry out the experimental and numerical investigation on the flexural behavior of sandwich honeycomb composite (SHC) beams reinforced with novel triaxially woven fabric composite skins. Different stacking sequences of the carbon fiber reinforcement polymer (CFRP) laminate; i.e., 0°-direction of TW (TW0), 0°-direction of UD (UD0), and 90°-direction of UD (UD90) were studied, from which the flexural behavior of SHC beam behaviors reinforced with TW0/UD0 or TW0/UD90 novel laminated skins were compared with those reinforced with UD0/90 conventional laminated skins under four-point loading. Generally, TW0/UD0 SHC beams displayed the same flexural stiffness as UD0/90 SHC beams in terms of load-deflection relationships. In contrast, TW0/UD90 SHC beams showed a 70% lower efficiency than those of UD0/90 SHC. Hence, the TW0/UD0 laminate arrangement is more effective with a mass reduction of 39% compared with UD0/90 for SHC beams, although their stiffness and shear strength are practically identical.

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.

Study on FOWT Structural Design Procedure in Initial Design Stage Using Frequency Domain Analysis (주파수 영역 해석을 활용한 부유식 해상풍력 플랫폼 초기 구조설계 절차 연구)

  • Ikseung Han;Yoon-Jin Ha;Kyong-Hwan Kim
    • Journal of Wind Energy
    • /
    • 제14권1호
    • /
    • pp.29-36
    • /
    • 2023
  • The analysis of the floating offshore wind turbine platform is based on the procedures provided by the IEC including the International Classification Society, which recommends the analysis in the time domain. But time-domain simulation requires a lot of time and resources to solve tens of thousands of DLCs. This acts as a barrier in terms of floating structure development. For final verification, it requires very precise analysis in the time domain, but from an initial design point of view, a simplified verification procedure to predict the quantity of materials quickly and achieve relatively accurate results is crucial. In this study, a structural design procedure using a design wave applied in the oil and gas industries is presented combined with a conservative turbine load. With this method, a quick design spiral can be rotated, and it is possible to review FOWTs of various shapes and sizes. Consequently, a KRISO Semi-Submersible FOWT platform was developed using a simplified design procedure in frequency-domain analysis.

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • 제53권9호
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.

Classification of Rock Mass on Cutting Slopes in Muakjae, Seoul (서울 무악재 절취사면에서의 암판정 연구)

    • Tunnel and Underground Space
    • /
    • 제9권2호
    • /
    • pp.158-167
    • /
    • 1999
  • There are substantial difficulties in assessing the volume of soill/rock to be excavated and the cost thereof, which is attributable to the subjective and qualitative methods of rock mass classification prevailing at the moment. This paper intends to introduce more objective and quantitative rock mass classification method easily applicable to the excavation of granites in Muakjae, Seoul. As a result of such study it is proven that Schmidt hammer and point load strength tests are fairly reliable and easily applicable to estimate and quantify uniaxial compressive strength of granitic material in Seoul. In an efforts to confirm the granitic rock mass conditions in 12 meters underground, seismic refraction surveys were made on the top of vertical exposures from where underlying rock mass conditions could be directly inspected. Rock mass boundaries determined by seismic refraction methods were found to agree within a 1m variance with visible differences in rock mass conditions in the vertical exposure beneath the test site. Thus it can be concluded that detailed geotechnical mapping on cutting slopes is a most efficient, dependable and cost-effective technique in assessing likely excavation conditions of shallow granitic mass in Seoul.

  • PDF

Drying Shrinkage of Ultra High Strength Steel-Fiber Reinforced Cementitious Composites (초고강도 강섬유 보강 시멘트 복합체의 건조수축에 관한 연구)

  • Kang, Su-Tae;Joh, Chang-Bin;Park, Jong-Sup;Ryu, Gum-Sung;Kim, Sung-Wook;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.737-740
    • /
    • 2008
  • When UHSFRC is applied to structures, it can be expected that it shows excellent performance in a point of constructability and load capacity. However, its rich mix can cause some problems concerning the long-term behavior such as shrinkage and creep. Therefore it is inevitably needed to investigate its long-term behavior in order to apply it to structures safely. This study is dealing with the drying shrinkage of UHSFRC. UHSFRC shows relatively fast drying shrinkage in the early exposed ages and slow moisture diffusion caused by compact microstructure of the material. It was found that The KCI model to predict the drying shrinkage did not properly represent these properties of UHSFRC. therefore a modified drying shrinkage model applicable to UHSFRC, which has different shrinkage properties from that of normal concrete, was proposed

  • PDF

An Experimental Study on the Compression Behavior of the Circular and Square Tubular Steel Pipe filled with Concrete (콘크리트 충전 원형 및 각형 합성 강관 기둥의 압축 거동에 관한 실험적 연구)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • 제6권1호
    • /
    • pp.55-63
    • /
    • 2006
  • Concrete-filled steel columns consist of circular, square or rectangular hollow sections filled concrete. Much research has studied for the behavior of concrete-filled steel structures. The advantages from structural point of view are the triaxial confinement of the concrete within the section, and the fire resistance of the column which largely depends on the residual capacity of the concrete core. The axial capacity of a concrete-filled rectangular or circular section is enhanced by the confining effect of the steel section on the concrete which depends in the magnitude on the shape of the section and the length of the column. Buckling tends to reduce the benefit of confinement on the squash load as the column slenderness increases. In circular sections it is possible to develop the cylinder strength of the concrete. When compare with reinforced concrete columns, the concrete-filled composite column possesses much better strength and ductility in shear and generally in flexure also. Many researches are being conducted about concrete filled steel column to get these advantages in building design. In this paper it is provided to the basic experimental study of compression behavior of the circular and rectangular tubular steel pipe filled with concrete.

  • PDF