• 제목/요약/키워드: Point cloud data

검색결과 495건 처리시간 0.031초

가상공간 생성을 위한 라이다와 스테레오 카메라 기반 포인트 클라우드 생성 방안 (Point Cloud Generation Method Based on Lidar and Stereo Camera for Creating Virtual Space)

  • 임요한;정인혁;이산성;황성수
    • 한국멀티미디어학회논문지
    • /
    • 제24권11호
    • /
    • pp.1518-1525
    • /
    • 2021
  • Due to the growth of VR industry and rise of digital twin industry, the importance of implementing 3D data same as real space is increasing. However, the fact that it requires expertise personnel and huge amount of time is a problem. In this paper, we propose a system that generates point cloud data with same shape and color as a real space, just by scanning the space. The proposed system integrates 3D geometric information from lidar and color information from stereo camera into one point cloud. Since the number of 3D points generated by lidar is not enough to express a real space with good quality, some of the pixels of 2D image generated by camera are mapped to the correct 3D coordinate to increase the number of points. Additionally, to minimize the capacity, overlapping points are filtered out so that only one point exists in the same 3D coordinates. Finally, 6DoF pose information generated from lidar point cloud is replaced with the one generated from camera image to position the points to a more accurate place. Experimental results show that the proposed system easily and quickly generates point clouds very similar to the scanned space.

도로정보를 활용한 UAV 기반 3D 포인트 클라우드 공간객체의 위치정확도 향상 방안 (A Study on the Improvement of UAV based 3D Point Cloud Spatial Object Location Accuracy using Road Information)

  • 이재희;강지훈;이세원
    • 대한원격탐사학회지
    • /
    • 제35권5_1호
    • /
    • pp.705-714
    • /
    • 2019
  • 고해상도 UAV 영상의 다양한 활용을 위해서는 정밀한 위치보정이 필요하다. 이를 위해 지상기준점을 선정하는 것이 일반적이지만 긴급상황이나 지상기준점 선정이 어려운 경우에는 지상기준점없이 촬영을 수행해야 한다. 본연구에서는 지상기준점 없이 생성된 UAV 기반 3차원 point cloud 데이터의 x, y 좌표에 대한 위치 정확도 향상방법을 제안하였다. 위치정확도 향상을 위한 기준 데이터로 공공데이터포털에서 제공하는 벡터파일 중 도로 정보를 이용하였다. 2차원 정사보정 영상의 기하보정을 먼저 수행하고, 이 과정에서 산출된 변환행렬을 3차원 point cloud에 적용하는 방법을 채택하였다. 보정 전 약 34.54 m의 직선 거리 차이가 보정 후 약 1.21 m 로 감소하였다. 지상기준점 선정없이 획득된 UAV영상의 2차원 및 3차원 영상의 위치정확도 향상이 가능함을 확인함에 따라 타 공간정보 데이터와의 연계 및 호환 등이 가능해져 point cloud 데이터에서 획득된 3차원 공간 객체의 활용 범위의 확대를 기대한다.

Point Cloud 기반의 고해상도 원시데이터 연계 및 관리시스템 개발 (Development of Linking & Management System for High-Resolution Raw Geo-spatial Data based on the Point Cloud DB)

  • 김재학;이동하
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.132-144
    • /
    • 2018
  • 건설, 의료, 컴퓨터 그래픽스, 도시공간 관리 등 다양한 분야에서 3차원 공간정보 모델이 이용되고 있다. 특히 측량 및 공간정보 분야에서는 최근 고품질의 3차원 공간정보와 실내공간정보에 대한 수요가 폭발적으로 증가하고 있으나, 현재 공간정보 데이터가 다양한 형식과 저장구조로 구성되어 관리되고 있어 저비용 고효율의 3차원 공간정보 서비스가 어려운 상황이다. 실제로 활용도 높은 3차원 모델을 구축하기 위한 기술은 관측과 처리에 고액의 비용이 발생하지만, 대부분의 수요처에서는 이러한 고비용의 공간정보 구축에 어려움을 느끼는 경우가 대부분이다. 따라서 본 연구에서는 저비용의 3D 공간정보 모델을 구축하기 위한 효율적인 방안을 제시하는 것을 목적으로 하였다. 현재의 3D 모델의 구축 방법 중 가장 효율적인 방법으로는 기존에 구축되어 있는 Point Cloud, UAV 관측영상 등의 원시데이터를 활용하여 비용을 절감시키는 방법이 있지만, 이는 관리하는 기관이 분리되어 있고 사용하기 위해 요청하는 절차가 복잡하여 활용에 제한이 있었다. 본 연구에서는 이를 해결하기 위해서 도로대장 관리 분야를 대상으로 3D 구축에 필요한 기반데이터를 통합하여 연계하고 관리 할 수 있는 통합관리 시스템 개발을 수행하였으며, 다양한 형태의 원시자료를 Point Cloud 형식으로 구성하여 도로대장 관리에 적용할 경우 6개의 주요 관리항목을 효과적 구축 및 관리할 수 있을 것으로 판단되었다.

불규칙 3차원 데이터를 위한 기하학정보를 이용한 딥러닝 기반 기법 분석 (Survey on Deep Learning Methods for Irregular 3D Data Using Geometric Information)

  • 조성인;박해주
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.215-223
    • /
    • 2021
  • 3D data can be categorized into two parts : Euclidean data and non-Euclidean data. In general, 3D data exists in the form of non-Euclidean data. Due to irregularities in non-Euclidean data such as mesh and point cloud, early 3D deep learning studies transformed these data into regular forms of Euclidean data to utilize them. This approach, however, cannot use memory efficiently and causes loses of essential information on objects. Thus, various approaches that can directly apply deep learning architecture to non-Euclidean 3D data have emerged. In this survey, we introduce various deep learning methods for mesh and point cloud data. After analyzing the operating principles of these methods designed for irregular data, we compare the performance of existing methods for shape classification and segmentation tasks.

자동 치아 분할용 종단 간 시스템 개발을 위한 선결 연구: 딥러닝 기반 기준점 설정 알고리즘 (Prerequisite Research for the Development of an End-to-End System for Automatic Tooth Segmentation: A Deep Learning-Based Reference Point Setting Algorithm)

  • 서경덕;이세나;진용규;양세정
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권5호
    • /
    • pp.346-353
    • /
    • 2023
  • In this paper, we propose an innovative approach that leverages deep learning to find optimal reference points for achieving precise tooth segmentation in three-dimensional tooth point cloud data. A dataset consisting of 350 aligned maxillary and mandibular cloud data was used as input, and both end coordinates of individual teeth were used as correct answers. A two-dimensional image was created by projecting the rendered point cloud data along the Z-axis, where an image of individual teeth was created using an object detection algorithm. The proposed algorithm is designed by adding various modules to the Unet model that allow effective learning of a narrow range, and detects both end points of the tooth using the generated tooth image. In the evaluation using DSC, Euclid distance, and MAE as indicators, we achieved superior performance compared to other Unet-based models. In future research, we will develop an algorithm to find the reference point of the point cloud by back-projecting the reference point detected in the image in three dimensions, and based on this, we will develop an algorithm to divide the teeth individually in the point cloud through image processing techniques.

Point Cloud Segmentation Method Considering Wall Finishing Information Using 2D Material Segmentation and Back Projection

  • Sung-Jae Bae;Minji Song;Eunji Choi;Chan-Jin Kim;Junbeom Park;Young suk Kim;Jung-Yeol Kim
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.613-620
    • /
    • 2024
  • Progress monitoring and quality control using as-built Building Information Modeling (BIM) are actively applied to construction industry. In order to effectively perform these management works, Scan-to-BIM is a key process to create as-built BIM models. In the Scan-to-BIM process point cloud segmentation is a critical task to identify object semantic information from point cloud data. While segmentation methods of main structural components such as walls, slabs, columns, and ceilings are actively studied and used for the management works, segmentation considering the finishing works of these components is still challenging. Therefore, this study proposed a point cloud segmentation method that considered wall finishing information, utilizing both point clouds and 2D images acquired from terrestrial laser scanners. The proposed method is composed of three main steps: 1) Segmenting as-built point clouds of main structural components through the comparison with as-planned BIM. 2) Applying a SegFormer material segmentation model that trained with wall finishing data (2D images) from terrestrial laser scanners to segment wall finishing information in 2D images. 3) Labelling the point cloud with recognized wall finishing information using back projection based on camera pose data. The proposed method is expected to contribute to the enchantment of the level of details (LoD) in as-built BIM and be useful in progress monitoring and quality control of finishing works.

점군 데이터를 활용한 옹벽의 단면 수치 정보 자동화 도출 (Automated Derivation of Cross-sectional Numerical Information of Retaining Walls Using Point Cloud Data)

  • 한제희;장민서;한형서;조형준;신도형
    • 한국BIM학회 논문집
    • /
    • 제14권2호
    • /
    • pp.1-12
    • /
    • 2024
  • The paper proposes a methodology that combines the Random Sample Consensus (RANSAC) algorithm and the Point Cloud Encoder-Decoder Network (PCEDNet) algorithm to automatically extract the length of infrastructure elements from point cloud data acquired through 3D LiDAR scans of retaining walls. This methodology is expected to significantly improve time and cost efficiency compared to traditional manual measurement techniques, which are crucial for the data-driven analysis required in the precision-demanding construction sector. Additionally, the extracted positional and dimensional data can contribute to enhanced accuracy and reliability in Scan-to-BIM processes. The results of this study are anticipated to provide important insights that could accelerate the digital transformation of the construction industry. This paper provides empirical data on how the integration of digital technologies can enhance efficiency and accuracy in the construction industry, and offers directions for future research and application.

무인항공기 영상을 위한 영상 매칭 기반 생성 포인트 클라우드의 후처리 방안 연구 (Post-processing Method of Point Cloud Extracted Based on Image Matching for Unmanned Aerial Vehicle Image)

  • 이수암;김한결;김태정
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1025-1034
    • /
    • 2022
  • 본 논문에서는 건물의 포인트 클라우드를 추출할 때 발생하는 홀 영역의 보간을 통한 후처리 방안을 제안한다. 스테레오 영상 데이터에서 영상 매칭을 수행할 경우 차폐 및 건물 벽면 등의 영향으로 홀이 발생한다. 이런 영역은 추후 포인트 클라우드를 기반으로 하는 부가 산출물의 생성에 장애 요인이 될 수 있으므로, 이에 대한 효과적인 처리 기법의 적용이 필요하다. 먼저 영상 매칭을 적용하여 생성된 시차맵을 기반으로 초기 포인트 클라우드를 추출한다. 포인트 클라우드를 격자화 시키면 차폐영역 및 건물 벽면의 영향으로 발생하는 홀 영역을 확인할 수 있다. 홀 영역에 삼각망을 생성하고 삼각망 내부 값을 영역의 최소값으로 처리하는 과정을 반복하는 것으로 건물 주변의 지표면과 건물 간에 어색함 없는 보간의 수행이 가능하다. 격자화 된 데이터에서 보간 된 영역에 해당하는 위치정보를 포인트로 추가하여 새로운 포인트 클라우드를 생성한다. 보간과정 중 불필요한 점의 추가를 최소화하기 위해 초기 포인트 클라우드 영역에서 벗어나는 영역으로 보간 된 데이터는 처리하지 않았으며, 보간 된 포인트 클라우드에 적용되는 RGB 밝기값은 매칭에 사용된 스테레오 영상 중 촬영중심과 해당 픽셀이 가장 근접한 영상으로 설정하여 처리하였다. 실험 결과 제안 기법을 통해 대상영역의 포인트 클라우드 생성 후 발생하는 음영 영역이 효과적으로 처리되는 것을 확인할 수 있었다.

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF

FFD를 이용한 3차원 라스트 데이터 생성 시스템 (Development of a Three Dimensional Last Data Generation System using FFD)

  • 박인덕;임창현;김시경
    • 제어로봇시스템학회논문지
    • /
    • 제9권9호
    • /
    • pp.700-706
    • /
    • 2003
  • This paper presents a 3D last design system that provides the 3-dimensional last data based on the FFD(Free Form Deformation) method. The proposed system utilizes the control points for deformation factor to convert from the 3D point cloud foot data to the 3D point cloud last data. The deformation factor of the FFD is obtained from the conventional last design technique, and constructed on the FFD lattice based on the bottom view and lateral view of the measured 3D point cloud foot data. In addition, the control points of FFD lattice is decided on the anatomical points of foot. The deformed 3D last obtained from the proposed FFD is saved as a 3D dxf foot data. The experimental results demonstrate that the proposed system have the descent 3D last data based on the openGL window.