• Title/Summary/Keyword: Point cloud

Search Result 853, Processing Time 0.03 seconds

A Privacy-preserving Image Retrieval Scheme in Edge Computing Environment

  • Yiran, Zhang;Huizheng, Geng;Yanyan, Xu;Li, Su;Fei, Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.450-470
    • /
    • 2023
  • Traditional cloud computing faces some challenges such as huge energy consumption, network delay and single point of failure. Edge computing is a typical distributed processing platform which includes multiple edge servers closer to the users, thus is more robust and can provide real-time computing services. Although outsourcing data to edge servers can bring great convenience, it also brings serious security threats. In order to provide image retrieval while ensuring users' data privacy, a privacy preserving image retrieval scheme in edge environment is proposed. Considering the distributed characteristics of edge computing environment and the requirement for lightweight computing, we present a privacy-preserving image retrieval scheme in edge computing environment, which two or more "honest but curious" servers retrieve the image quickly and accurately without divulging the image content. Compared with other traditional schemes, the scheme consumes less computing resources and has higher computing efficiency, which is more suitable for resource-constrained edge computing environment. Experimental results show the algorithm has high security, retrieval accuracy and efficiency.

Scan Model Construction for 3D Printout of Metal Implant Parts (의료용 금속 임플란트 부품에 대한 3D 프린팅 출력물의 스캔 모델 구성)

  • Ye, Byounghun;Kim, Ku-Jin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.18-20
    • /
    • 2022
  • 3D 프린팅 임플란트 부품은 표면에 결함이 생기기 쉬우므로, 출력 후 표면을 검사하는 과정이 필요하다. 표면 검사를 자동화하기 위해서는 임플란트를 3D 스캔하여 점군 (point cloud)와 같은 스캔 모델로 구성하는 방법이 효과적이다. 스캔 모델을 구성할 때, 임플란트가 일반적인 3D 프린팅 출력물과는 다른 특성들을 가지므로 이에 대한 고려가 필요하다. 본 논문에서는 3D 프린터로 출력된 의료용 임플란트 부품의 특성에 맞게 3D 스캔을 수행하여 스캔 모델을 구성하는 방법을 제안하고, 실험을 통해 생성된 스캔 모델을 보인다.

User classification and location tracking algorithm using deep learning (딥러닝을 이용한 사용자 구분 및 위치추적 알고리즘)

  • Park, Jung-tak;Lee, Sol;Park, Byung-Seo;Seo, Young-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.78-79
    • /
    • 2022
  • In this paper, we propose a technique for tracking the classification and location of each user through body proportion analysis of the normalized skeletons of multiple users obtained using RGB-D cameras. To this end, each user's 3D skeleton is extracted from the 3D point cloud and body proportion information is stored. After that, the stored body proportion information is compared with the body proportion data output from the entire frame to propose a user classification and location tracking algorithm in the entire image.

  • PDF

Integrated Visualization Method using Multiple Lidar Sensors (다수 라이다 센서를 이용한 통합 시각화 방법)

  • Lee, Eun-Seok;Lee, Yoon-Yim;Noh, Heejeon;Kim, Young-Chul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.159-160
    • /
    • 2022
  • 본 논문에서는 최근 주요시설의 경계에 주로 사용되기 시작한 라이다 센서를 여러대 사용할때 보다 효율적으로 사용하기 위해서 통합된 3차원 좌표계에서 시각화하는 방법에 대해 설명한다. 주로 카메라 기반 CCTV의 경우 정확성은 높지만 시야각(Field of View)이 좁기 때문에 레이더(RADAR)센서와 같은 센서와 함께 혼용되는 경우가 많다. 레이더 센서의 데이터는 넓은 범위에 대한 감지를 할 수 있지만 노이즈가 많고 물체의 형상을 정확하게 측정하기 힘들다. 라이다(LiDAR) 센서는 레이져를 이용하여 멀고 넓은 범위를 정교하게 측정할 수 있다. 이러한 라이다 센서는 정교한 만큼 처리해야할 데이터의 양이 많으며, 다수의 센서를 이용하더라도 하나의 화면에서 처리하기 힘들다는 단점이 있다. 제안하는 논문은 여러개의 라이다 센서에서 측정한 데이터를 실시간에 하나의 좌표계로 통일하여 하나의 영상을 보일 수 있도록 통합 뷰잉 환경을 제공한다.

  • PDF

LiDAR-based Mapping Considering Laser Reflectivity in Indoor Environments (실내 환경에서의 레이저 반사도를 고려한 라이다 기반 지도 작성)

  • Roun Lee;Jeonghong Park;Seonghun Hong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.135-142
    • /
    • 2023
  • Light detection and ranging (LiDAR) sensors have been most widely used in terrestrial robotic applications because they can provide dense and precise measurements of the surrounding environments. However, the reliability of LiDAR measurements can considerably vary due to the different reflectivities of laser beams to the reflecting surface materials. This study presents a robust LiDAR-based mapping method for the varying laser reflectivities in indoor environments using the framework of simultaneous localization and mapping (SLAM). The proposed method can minimize the performance degradations in the SLAM accuracy by checking and discarding potentially unreliable LiDAR measurements in the SLAM front-end process. The gaps in point-cloud maps created by the proposed approach are filled by a Gaussian process regression method. Experimental results with a mobile robot platform in an indoor environment are presented to validate the effectiveness of the proposed methodology.

Smart Point of sales software based on Cloud server (클라우드 서버 기반의 스마트 POS 소프트웨어)

  • Park, Jong-Ho;Kim, Jun-Ha;Kim, Min-Gyu;Ma, Gyeong-Ho;Go, Seok-Ju;Park, Chan-Sik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.264-267
    • /
    • 2021
  • POS 소프트웨어는 제품 판매 시점에 실시간으로 판매 정보가 저장되어 매출 분석 및 자동 정산, 재고 관리를 통해 효율적인 경영 관리를 가능하게 해주는 소프트웨어를 말한다. 이미 시장에 상당수의 POS 소프트웨어 제품들이 출시되긴 했지만, 무인 결제 시스템인 키오스크 (Kiosk) 나 메뉴 정보나 주문 정보를 실시간으로 표시해주는 DID 와 같이 효율적인 매장 관리를 위해 필요한 솔루션을 POS 와 동시에 사용하기는 고가의 비용을 지불하거나, 해당 솔루션을 함께 해주는 상품은 거의 존재하지 않는다. 본 논문에서는 moki 사에서 이미 제공하고 있는 솔루션에 연동되는 POS 소프트웨어 개발로 저렴한 가격으로 매장 관리를 할 수 있는 시스템 제공을 목표로 한다.

  • PDF

Resampling Method to Improve Performance of Point Cloud Registration (포인트 클라우드 정합 성능 향상을 위한 리샘플링 방법)

  • Kim, Jongwook;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.187-189
    • /
    • 2020
  • 본 논문에서는 포인트 클라우드 정합 성능 향상을 위해 기하적 복잡도가 낮은 정점들의 영향을 최소화하는 포인트 클라우드 리샘플링 방법을 제안한다. 3 차원 특징 기술자(3D feature descriptor)를 기반으로 하는 포인트 클라우드 정합은 정점 법선 벡터의 변화량을 특징으로 사용한다. 따라서 강건한 특징은 대부분 정점 법선 벡터의 변화량이 큰 영역에서 추출된다. 반면에 정점 법선 벡터의 변화량이 거의 없는 평면 영역은 정합 수행 시에 이상점(outlier)으로 작용할 수 있으므로 해당 정점들이 정합 과정에 미치는 영향을 최소화해야 한다. 제안하는 방법은 모델 포인트 클라우드의 기하적 복잡도를 고려한 리샘플링을 통해 전체 정점의 수 대비 복잡도가 낮은 정점들의 비율을 낮추어 이상점이 정합 과정에 미치는 영향을 최소화하고 정합 성능을 향상시켰다.

  • PDF

Performance Analysis of 3DoF+ Video Coding Using V3C (V3C 기반 3DoF+ 비디오 부호화 성능 분석)

  • Lee, Ye-Jin;Yoon, Yong-Uk;Kim, Jae-Gon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.166-168
    • /
    • 2020
  • MPEG 비디오 그룹은 MPEG-I 표준의 일부로 포인트 클라우드(Point Cloud) 압축을 위한 비디오 기반 포인트 클라우드 부호화(V-PCC)와 몰입형(immersive) 비디오 압축을 위한 MPEG Immersive Video(MIV) 표준을 개발하고 있다. 최근에는 포인트 클라우드 및 몰입형 비디오와 같은 체적형(volumetric) 비디오를 모두 압축할 수 있도록 V-PCC 와 MIV 를 통합한 V3C(Visual Volumetric Video-based Coding) 표준화를 진행하고 있다. 본 논문에서는 V3C 코덱을 사용한 3DoF+(3 Degree of Freedom plus) 비디오 부호화 방안을 분석한다. 또한 V3C 코덱의 2D 코덱으로 기존 HEVC 대신 VVC 를 사용할 경우의 부호화 성능 향상을 분석한다.

  • PDF

Volume Detection from Indoor Spherical Panorama Point Cloud (실내 구면 파노라마 점군으로부터의 볼륨 검출)

  • Kim, Ki-Sik;Park, Jong-Seung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.560-563
    • /
    • 2021
  • 본 논문에서는 사각형 실내 공간에서 점군 데이터를 기반으로 빠르고 정확하게 바닥, 천장, 벽면에 대한 평면 정보를 획득할 수 있는 시스템을 제안한다. 기존의 방법은 관측되지 않은 공간에 대한 평면을 예측할 수 없으며, 노이즈에 취약하고, 모든 점에 대한 기저 정보를 알아야하기 때문에 많은 연산량을 요구한다. 제안 방법은 기존의 평면 검출 방식에서 벗어나 Bounding Box 형상을 예측하는 기술을 활용한다. 또한, 제안 시스템은 구면 파노라마 비디오를 기반으로 적은 수의 프레임으로도 빠르게 실시간 점군 데이터를 확장해나간다. 제안 방법은 실험을 통해 기존의 방법보다 월등히 빠르고, 노이즈 등 환경 제약 요소에 강건함을 보인다.

3D Motion Estimation and Compensation method for Point cloud video codec by 3D DCT (3D DCT 를 이용한 포인트 클라우드의 움직임 예측/보상 기법)

  • Lee, Minseok;Kim, Boyeun;Yoon, Sangeun;Hwang, Yonghae;Kim, Junsik;Kim, Khuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.279-282
    • /
    • 2021
  • 포인트 클라우드는 3 차원 물체를 표현하기 위한 점들의 집합으로, 동적인 3 차원 데이터를 정밀하게 획득할 수 있기에 이의 효율적인 압축의 필요성이 대두되고 있다. 기존 3D DCT(3D Discrete Cosine Transform)를 이용한 동적 객체의 포인트 클라우드 압축 방식은 Inter 프레임 압축을 고려하지 않아 압축시의 데이터 압축률에 한계가 있다. 따라서 본 논문은 이러한 문제점을 개선하기 위해 3D DCT 를 이용한 움직임 예측을 통하여 포인트 클라우드 영상의 I 프레임 및 P 프레임을 압축하는 방식을 제안한다.

  • PDF