• Title/Summary/Keyword: Point charge potential

Search Result 56, Processing Time 0.026 seconds

척수손상환자의 우울성향에 관한 연구

  • Gang, Sun-Hui
    • Journal of the Korean Physical Therapy Association
    • /
    • v.13 no.1
    • /
    • pp.5-17
    • /
    • 1992
  • Depression in Spinal Cord Injury Patients Kang, Soon Hee, M.Ed., R.P.T. Dept. of Rehabilitation Medicine, Kyung-Hee University Medical Center Depressions have the potential to affect adversely the rehabilitation of patients with spi-nal cord iniury. The present study examined depression, functional independence, and demographic and medical characteristics for 49 spinal cord injury(SCI) patients. This investigation involved the administration of the Beck Depression Inventory, the Modified Barthel Index, and aquestionnaire consisted of 14 items, The results were as follows .1. Compared to normal subjects, SCI patients had significantly higher BDI scores.2. When the cut-off point of HDI scores was assumed 21, 26.1% of normal subjeets and 75.5% of SCI patients appeared to be depressed. Depression in SCT patients were not related with age, sex, marital status, injury evel, severity, duration, pain, functional independence and medical charge. Depression in SCI patients were related with education level, economic level, age at injury, motivation. Depression in normal subjects were related with age, education level, economic level, but not related with sex, marital status. There were significant differences at 30 items of BDI between normal subjects and SCI patients. The items were as fellows . 1 sadness, 2 pessimism, 3 failure, 4 dissat-isfaction, 5 guilt, 6 punishment. 7 self-dislike 9 suicidal, 10 crying, 11 irritability, 12withdrawl, 13 indecisive, 14 self-image, IS work inhibition, 16 insomnia, 17 fatigue,18 anorexia, 19 weight loss, 20 hypochondria, 21 libido loss.

  • PDF

Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

  • Meng, Xiangpeng;Ryu, Jina;Kim, Bumsik;Ko, Sanghoon
    • Clinical Nutrition Research
    • /
    • v.5 no.3
    • /
    • pp.172-179
    • /
    • 2016
  • Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.

Chemical Bonding and Surface Electronic Structures of Pt3Co (111), Pt3Ni (111) Single Crystals

  • Kim, Yong-Su;Jeon, Sang-Ho;Bostwick, Aaron;Rotenberg, Eli;Ross, Philip N.;Stamenkovic, Vojislav R.;Markovic, Nenad M.;Noh, Tae-Won;Han, Seung-Wu;Mun, Bong-Jin Simon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.139-139
    • /
    • 2012
  • With angle resolved photoemission spectroscopy (ARPES), the surface electronic band structures of Pt3Co (111) and Pt3Ni (111) single crystals are investigated, which allow to study the bonding interaction between chemically absorbed atomic oxygen and its surfaces. The d-band electrons of subsurface TM are separated from the direct chemical bonding with atomic oxygen. That is, the TM does not contribute to direct chemical bonding with oxygen. From the density functional theory (DFT) calculations, it is identified that the main origin of improved oxygen absorption property, i.e. softening of Pt-O bonding, is due to the suppression of Pt surface-states which is generated from change of interlayer potential, i.e. charge polarization, between Pt-top and TM-subsurface. Our results point out the critical roles of subsurface TM in modifying surface electronic structures, which in turn can be utilized to tune surface chemical properties.

  • PDF

Comparison of Different Theory Models and Basis Sets in Calculations of TPOP24N-Oxide Geometry and Geometries of meso-Tetraphenyl Chlorin N-Oxide Regioisomers

  • Choe, Sang-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2861-2866
    • /
    • 2012
  • Results of the comparisons of various density functional theory (DFT) methods with different basis sets for predicting the molecular geometry of TPOP24N-Oxide macrocycle, an oxoporphyrin N-oxide, are reported in this paper. DFT methods, including M06-2X, B3LYP, LSDA, B3PW91, PBEPBE, and BPV86, are examined. Different basis sets, such as 6-$31G^*$, 6-31+G (d, p), 6-311+G (d, p), and 6-311++G (d, p), are also considered. The M06-2X/6-$31G^*$ level is superior to all other density functional methods used in predicting the geometry of TPOP24N-Oxide. The geometries of regioisomeric chlorin N-oxide and oxoporphyrin N-oxide are reported using M06-2X/6-$31G^*$ method. The geometry effects of oxoporphyrin and chlorin N-oxide regioisomers are increased ${\beta}-{\beta}$ bond lengths by N-oxidation because the bond overlap index due to charge transfers is decreased. In N-oxidation ring (II, III), angles that include ${\beta}-{\beta}$ bond length increase as the bond overlap index of ${\beta}-{\beta}$ bond is decreased by N-oxidation. The potential energy surfaces of chlorin N-oxide and oxoporphyrin N-oxide are explored by M06-2X/6-$31G^*$, and single-point calculations are performed at levels up to M06-2X/6-311++G (d, p). Total and relative energies are then calculated. The results indicate that chlorin 24 N-oxides are more stable than chlorin 22 N-oxides in chlorin N-oxide regioisomers. Moreover, TPOP24N-Oxide is less stable than TPOP22N-Oxide.

Isolation of Two Hepcidin Paralogs, Hamp1 and Hamp2, from a Euryhaline Javanese Ricefish (Oryzias javanicus: Beloniformes)

  • Lee, Sang-Yoon;Kim, Byoung-Soo;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.93-104
    • /
    • 2011
  • Two hepcidin paralogs (ojhamp1 and ojhamp2) were isolated and characterized from a euryhaline Javanese ricefish (Oryzias javanicus: Beloniformes). The ojhamp1 cDNA encoded 90 or 91 amino acids (aa) of a typical HAMP1 preproprotein. This preproprotein is believed to cleave and yield the 66 or 67 aa-proprotein, followed by the 26 aa-mature peptide, composed of 8 conserved cysteine residues and the QSHL amino terminal motif. The ojhamp2 cDNA encoded 89 aa of HAMP2 preproprotein, cleaved to yield a 65 aa proprotein, and subsequently the 25 aa-mature peptide. The mature OJHAMP1 possessed a cationic isoelectric point (pI), whereas OJHAMP2 had an anionic charge. At the genomic level, both ojhamp1 and ojhamp2 share a conserved tripartite structure (three exons interrupted by two introns) with other vertebrate hepcidin genes. However, the ojhamp1 was shown to exist as two distinct mRNA species, encoding 90 or 91 aa, due to alternative splicing at the junction site between intron I and exon II. Both ojhamp1 and ojhamp2 transcripts were detected in a wide range of tissue types with varying levels of basal expression, although the highest expression was observed in the liver for both isoforms. Transcriptional response to bacterial challenge using Edwardsiella tarda showed that ojhamp1 was moderately upregulated in the liver but remained unchanged in the kidney. However, the ojhamp2 was significantly suppressed in both the kidney and liver, suggesting a potential diversification between the two paralogs.

Attenuation of Chlorinated Pesticides(2,4-D, atrazine) Using Organoclays (유기점토를 이용한 유기염소계 농약(2,4-D, atrazine) 오염 저감)

  • Choi, Ji-Yeon;Shin, Won-Sik
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.185-197
    • /
    • 2011
  • Sorption of chlorinated pesticides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine onto natural clays (montmorillonite and zeolite) modified with cationic surfactant, hexadecyltrimethyl-ammonium (HDTMA) and a natural soil was investigated using batch adsorbers. The clays were transformed from hydrophilic to hydrophobic by the cation exchange between clay surface and HDTMA up to 100% of the cation exchange capacity (CEC). Physicochemical characteristics of the sorbents such as pH, PZC (point of zero charge), organic carbon content ($f_{oc}$), fourier transform infrared spectroscopy (FT-IR), differential thermogravimetric analysis (DTGA) and X-ray diffraction (XRD) were analyzed. Sorption isotherm models such as Freundlich and Langmuir were fitted to the experimental data, resulting Langmuir model ($R^2$ > 0.986) was fitted better than Freundlich model ($R^2$ > 0.973). Sorption capacity ($Q^0$) for 2,4-D and atrazine was in the order of HDTMA-montmorillonite > HDTMA-zeolite > natural soil corresponding to the increase in organic carbon content ($f_{oc}$). The sorption of the pesticides was also affected by pH. The sorption of 2,4-D decreased with the increase in pH, whereas that of atrazine was not changed. This indicated that the sorption capacity ($Q^0$) of 2,4-D and atrazine was not affected by the solution pH because they exist as anionic (deprotonated) forms at pH above pKa. The results indicate that organoclay has a promising potential to reduce chlorinated pesticides in the effluent from golf courses.

A Preliminary Research on Optical In-Situ Monitoring of RF Plasma Induced Ion Current Using Optical Plasma Monitoring System (OPMS)

  • Kim, Hye-Jeong;Lee, Jun-Yong;Chun, Sang-Hyun;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.523-523
    • /
    • 2012
  • As the wafer geometric requirements continuously complicated and minutes in tens of nanometers, the expectation of real-time add-on sensors for in-situ plasma process monitoring is rapidly increasing. Various industry applications, utilizing plasma impedance monitor (PIM) and optical emission spectroscopy (OES), on etch end point detection, etch chemistry investigation, health monitoring, fault detection and classification, and advanced process control are good examples. However, process monitoring in semiconductor manufacturing industry requires non-invasiveness. The hypothesis behind the optical monitoring of plasma induced ion current is for the monitoring of plasma induced charging damage in non-invasive optical way. In plasma dielectric via etching, the bombardment of reactive ions on exposed conductor patterns may induce electrical current. Induced electrical charge can further flow down to device level, and accumulated charges in the consecutive plasma processes during back-end metallization can create plasma induced charging damage to shift the threshold voltage of device. As a preliminary research for the hypothesis, we performed two phases experiment to measure the plasma induced current in etch environmental condition. We fabricated electrical test circuits to convert induced current to flickering frequency of LED output, and the flickering frequency was measured by high speed optical plasma monitoring system (OPMS) in 10 kHz. Current-frequency calibration was done in offline by applying stepwise current increase while LED flickering was measured. Once the performance of the test circuits was evaluated, a metal pad for collecting ion bombardment during plasma etch condition was placed inside etch chamber, and the LED output frequency was measured in real-time. It was successful to acquire high speed optical emission data acquisition in 10 kHz. Offline measurement with the test circuitry was satisfactory, and we are continuously investigating the potential of real-time in-situ plasma induce current measurement via OPMS.

  • PDF

Cutting Fluid Effluent Removal by Adsorption on Chitosan and SDS-Modified Chitosan

  • Piyamongkala, Kowit;Mekasut, Lursuang;Pongstabodee, Sangobtip
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.492-502
    • /
    • 2008
  • This study examined the adsorption of a synthetic cutting fluid and cutting fluid effluent on chitosan and SDS-modified chitosan, Chitosan and SDS-modified chitosan were prepared in form of beads and fibers. A series of batch experiments were carried out as a function of the initial concentration of cutting fluid, contact time and pH of the fluid. The contact angle study suggested that the SDS-modified chitosan was more hydrophobic than chitosan. The Zeta potential study showed that chitosan, SDS-modified chitosan and synthetic cutting fluid had a point of zero charge (PZC) at pH 7.8, 9 and 3.2, respectively. SDS-modified chitosan has a greater adsorption capacity than chitosan. The experimental results show that adsorption capacity of the cutting fluid on 1.0 g of SDS-modified chitosan at pH 3 and for a contact time of 120 min was approximately 2,500 g/kg. The adsorption capacity of chitosan and SDS-modified chitosan increased with decreasing pH. The Langmuir, Freundlich, and Brunauer Emmett and Teller (BET) adsorption models were used to explain the adsorption isotherm. The Langmuir isotherm fitted well with the experimental data of chitosan while the BET isotherm fitted well with the SDS-modified chitosan data. Pseudo first- and second-order kinetic models and intraparticle diffusion model were used to examine the kinetic data. The experimental data was fitted well to a pseudo second-order kinetic model. The significant uptake of cutting fluid on chitosan and SDS-modified chitosan were demonstrated by FT-IR spectroscopy, SEM and heat of combustion.

Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment (나노크기의 교질상 영가철 및 자철석에 대한 수용상의 거동특성)

  • Lee, Woo Chun;Kim, Soon-Oh;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.95-108
    • /
    • 2015
  • Nano-sized iron colloids are formed as acid mine drainage is exposed to surface environments and is introduced into surrounding water bodies. These iron nanomaterials invoke aesthetic contamination as well as adverse effects on aqueous ecosystems. In order to control them, the characteristics of their behaviour should be understood first, but the cumulative research outputs up to now are much less than the expected. Using zero-valent iron (ZVI) and magnetite, this study aims to investigate the behaviour of iron nanomaterials according to the change in the composition and pH of background electrolyte and the concentration of natural organic matter (NOM). The size and surface zeta potential of iron nanomaterials were measured using dynamic light scattering. Characteristic behaviour, such as aggregation and dispersion was compared each other based on the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory. Whereas iron nanomaterials showed a strong tendency of aggregation at the pH near point of zero charge (PZC) due to electrostatic attraction between particles, their dispersions became dominant at the pH which was higher or lower than PZC. In addition, the behaviour of iron nanomaterials was likely to be more significantly influenced by cations than anions in the electrolyte solutions. Particularly, it was observed that divalent cation influenced more effectively than monovalent cation in electrostatic attraction and repulsion between particles. It was also confirmed that the NOM enhanced the dispersion nanomaterials with increasing the negative charge of nanomaterials by coating on their surface. Under identical conditions, ZVI aggregated more easily than magnetite, and which would be attributed to the lower stability and larger reactivity of ZVI.

Adsorption of Arsenic on Goethite (침철석(goethite)과 비소의 흡착반응)

  • Kim, Soon-Oh;Lee, Woo-Chun;Jeong, Hyeon-Su;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.177-189
    • /
    • 2009
  • Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).