Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.9.2861

Comparison of Different Theory Models and Basis Sets in Calculations of TPOP24N-Oxide Geometry and Geometries of meso-Tetraphenyl Chlorin N-Oxide Regioisomers  

Choe, Sang-Joon (Department of Chemistry, Institute of Basic Science, Inje University)
Publication Information
Abstract
Results of the comparisons of various density functional theory (DFT) methods with different basis sets for predicting the molecular geometry of TPOP24N-Oxide macrocycle, an oxoporphyrin N-oxide, are reported in this paper. DFT methods, including M06-2X, B3LYP, LSDA, B3PW91, PBEPBE, and BPV86, are examined. Different basis sets, such as 6-$31G^*$, 6-31+G (d, p), 6-311+G (d, p), and 6-311++G (d, p), are also considered. The M06-2X/6-$31G^*$ level is superior to all other density functional methods used in predicting the geometry of TPOP24N-Oxide. The geometries of regioisomeric chlorin N-oxide and oxoporphyrin N-oxide are reported using M06-2X/6-$31G^*$ method. The geometry effects of oxoporphyrin and chlorin N-oxide regioisomers are increased ${\beta}-{\beta}$ bond lengths by N-oxidation because the bond overlap index due to charge transfers is decreased. In N-oxidation ring (II, III), angles that include ${\beta}-{\beta}$ bond length increase as the bond overlap index of ${\beta}-{\beta}$ bond is decreased by N-oxidation. The potential energy surfaces of chlorin N-oxide and oxoporphyrin N-oxide are explored by M06-2X/6-$31G^*$, and single-point calculations are performed at levels up to M06-2X/6-311++G (d, p). Total and relative energies are then calculated. The results indicate that chlorin 24 N-oxides are more stable than chlorin 22 N-oxides in chlorin N-oxide regioisomers. Moreover, TPOP24N-Oxide is less stable than TPOP22N-Oxide.
Keywords
Geometry effects; Chlorin N-oxide; Oxoporphyrin N-oxide regioisomers; DFT;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Kim, N.; Kim, S.; Kim, J. D.; Huh, D. S.; Shim, Y. K.; Choe, S. J. Bull. Korean Chem. Soc. 2009, 30, 205-213.   DOI
2 Huh, D. S.; Choe, S. J. J. Porphyrins Phthalocyanines 2010, 14, 592-604.   DOI
3 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Peterson, G. A.; Montgometry, J. A.; Raghavacari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. J.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. L.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford, CT, 2009.
4 Mayer, I. J. Comput. Chem. 2007, 28, 204-221.   DOI
5 Brunck, T. K.; weinhold, F. J. Am. Chem. Soc. 1979, 101, 1700- 1709.   DOI
6 Wiberg, K. B. Tetrahedron 1968, 24, 1083-1096.   DOI   ScienceOn
7 Feyten, D.; Chaume, G.; Chassaing, G.; Lavielle, S.; Brigaud, T.; Byun, B. J.; Kang, Y. K.; Miclet, E. J. Phys. Chem. B 2012, 116, 4069-4079.
8 Shaw, J. H. J. Chem. Phys. 1956, 24, 399-402.   DOI
9 Caron, A.; Palenik, G. J.; Goldish, E.; Donohue, J. Acta Crystallogr. 1964, 17, 102-108.   DOI
10 Chiang, J. F. J. Chem. Phys. 1974, 61, 1280-1283.   DOI
11 Yang, F. A.; Guo, C. W.; Chen, Y. J.; Chen, J. H.; Wang, S. S.; Tung, J. Y.; Hwang, L. P.; Elango, S. Inorg. Chem. 2007, 46, 578- 585.   DOI
12 Mizutani, Y.; Watanabe, Y.; Kitagawa, T. J. Am. Chem. Soc. 1994, 116, 3439-3441.   DOI
13 Rachlewicz, K.; Latos-Grazynski, L. Inorg. Chem. 1996, 35, 1136-1147.   DOI
14 Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1986, 108, 7836-7837.   DOI
15 Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1988, 110, 8443-8452.   DOI
16 Banerjee, S.; Zeller, M.; Bruckner, C. J. Org. Chem. 2010, 75, 1179-1187.   DOI
17 Ghosh, A. In The Porphyrin Handbook; Kardish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 1.
18 Shelnutt, J. A. In The Porphyrin Handbook; Kardish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 7, p 167.
19 Pandey, R. K.; Zheng, G. In The Porphyrin Handbook; Kardish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2000; Vol. 6, p 158.
20 Ghosh, A. Acc. Chem. Res. 1998, 31, 189-198.   DOI
21 Chen, D.-M.; Liu, X.; He, T.-J.; Liu, F.-C. Chem. Phys. Lett. 2002, 361, 106-114.   DOI
22 Sundholm, D. Phys. Chem. Chem. Phys. 2000, 2, 2275-2281.   DOI   ScienceOn
23 Parusel, A. B. J.; Wondimagegen, T.; Gosh, A. J. Am. Chem. Soc. 2000, 122, 6371-6374.   DOI
24 Chen, D.-M.; Liu, X.; He, T.-J.; Liu, F.-C. Chem. Phys. 2003, 289, 397-407.   DOI
25 Kim, Na.; Kim, S.; Kim, J. D.; Huh, D. S.; Shim, Y. K.; Choe, S. J. Bull. Korean Chem. Soc. 2009, 30, 205-213.   DOI
26 Bonnett, R.; Ridge, R. J.; Appelman, E. H. J. Chem. Soc., Chem. Commun. 1978, 310-311.
27 Balch, A. L.; Chan, Y. W.; Olmstead, M. M. J. Am. Chem. Soc. 1985, 107, 6510-6514.   DOI
28 Balch, A. L.; Chan, Y. W.; Olmstead, M.; Renner, M. W. J. Am. Chem. Soc. 1985, 107, 2393-2398.   DOI