Browse > Article
http://dx.doi.org/10.5322/JES.2011.20.2.185

Attenuation of Chlorinated Pesticides(2,4-D, atrazine) Using Organoclays  

Choi, Ji-Yeon (Department of Environmental Engineering, Kyungpook National University)
Shin, Won-Sik (Department of Environmental Engineering, Kyungpook National University)
Publication Information
Journal of Environmental Science International / v.20, no.2, 2011 , pp. 185-197 More about this Journal
Abstract
Sorption of chlorinated pesticides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine onto natural clays (montmorillonite and zeolite) modified with cationic surfactant, hexadecyltrimethyl-ammonium (HDTMA) and a natural soil was investigated using batch adsorbers. The clays were transformed from hydrophilic to hydrophobic by the cation exchange between clay surface and HDTMA up to 100% of the cation exchange capacity (CEC). Physicochemical characteristics of the sorbents such as pH, PZC (point of zero charge), organic carbon content ($f_{oc}$), fourier transform infrared spectroscopy (FT-IR), differential thermogravimetric analysis (DTGA) and X-ray diffraction (XRD) were analyzed. Sorption isotherm models such as Freundlich and Langmuir were fitted to the experimental data, resulting Langmuir model ($R^2$ > 0.986) was fitted better than Freundlich model ($R^2$ > 0.973). Sorption capacity ($Q^0$) for 2,4-D and atrazine was in the order of HDTMA-montmorillonite > HDTMA-zeolite > natural soil corresponding to the increase in organic carbon content ($f_{oc}$). The sorption of the pesticides was also affected by pH. The sorption of 2,4-D decreased with the increase in pH, whereas that of atrazine was not changed. This indicated that the sorption capacity ($Q^0$) of 2,4-D and atrazine was not affected by the solution pH because they exist as anionic (deprotonated) forms at pH above pKa. The results indicate that organoclay has a promising potential to reduce chlorinated pesticides in the effluent from golf courses.
Keywords
2,4-D; Atrazine; Organoclay; Pesticide; Sorption;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sparks, D. L., 2003, Environmental Soil Chemistry, 2nd ed., Academic Press, San Diego.
2 SRC PhysProp Database, 2010, http://www.syrres.com.
3 Van Olphen, H., 1991, An introduction to Clay Colloid Chemistry: For Clay Technoligists, Geologists, and Soil Scientists, 2nd ed., Krieger Pub. Co., Malabar.
4 Warith, M., Fernandes, L., Gaudet, N., 1999, Design of in situ microbial filter for the remediation of naphthalene, Waste Manage., 19, 9-25.   DOI
5 Zhao, H., Jaynes, W. F., Vance, G. F., 1996, Sorption of the ionizable organic compound, dicamba (3,6-dichloro-2-methoxy benzoic acid) by organo-clays, Chemosphere, 33, 2089-2100.   DOI
6 Zhou, Q., He, H. P., Zhu, J. X., Shen, W., Frost, R. L., Yuan, P., 2008, Mechanism of p-nitrophenol adsorption from aqueous solution by $HDTMA^+$-pillared montmorillonite-Implications for water purification, J. Hazard. Mater., 154, 1025-1032.   DOI
7 Zhu, L., Chen, B., Shen, X., 2000, Sorption of phenol, p-nitrophenol, and aniline to dual-cation organobentonites from water, Environ. Sci. Technol., 34, 468-475.   DOI
8 Zhu, R., Zhu, L., Zhu, J., Xu, L., 2008, Structure of surfactant-clay complexes and their sorptive characteristics toward HOCs, Sep. Purif. Technol., 63, 156-162.   DOI
9 Li, Z., Gallus, L., 2005, Surface configuration of sorbed hexadecyltrimethylammonium on kaolinite as indicated by surfactant and counterion sorption, cation desorption, and FTIR, Colloids Surfaces A: Physicochem. Eng. Aspects, 264, 61-67.   DOI
10 Lemic, J., Kovacevic, D., Tomasevic-Canovic, M., Kovacevic, D., Stanic, T., Pfend, R., 2006, Removal of atrazine, lindane and diazinone from water by organo-zeolites, Water Res., 40, 1079-1085.   DOI
11 Reymond, J. P., Kolenda, F., 1999, Estimation of the point of zero charge of simple and mixed oxides by mass titration, Powder Technol., 103, 30-36.   DOI
12 Rodriguez-Cruz, M. S., Sanchez-Martin, M. J., Andrades, M. S., Sanchez-Camazano, M., 2007, Modification of clay barriers with a cationic surfactant to improve the retention of pesticides in soils, J. Hazard. Mater., 139, 363-372.   DOI
13 Roy, A. H., Broudy, R. R., Auerbach, S. M., Vining, W. J., 1999, Teaching materials that matter: an interactive, multi-media module on zeolites in general chemistry, Chem. Educator, 4(3), 114-118.   DOI
14 Rozic, M., Sipusic, D. I., Sekovanic, L., Miljanic, S., Curkovic, L., Hrenovic, J., 2009, Sorption phenomena of modification of clinoptilolite tuffs by surfactant cations, J. Colloid Interf. Sci., 331, 295-301.   DOI
15 Shukla, P. R., Wang, S., Ang, H. M., Tade, M. O., 2009, Synthesis, characterisation, and adsorption evaluation of carbon-natural-zeolite composites, Adv. Powder Technol., 20, 245-250.   DOI   ScienceOn
16 Stapleton, M. G., Sparks, D. L., Dentel, S. K., 1994, Sorption of Pentachlorophenol to HDTMA-Clay as a Function of Ionic Strength and pH, Environ. Sci. Technol., 28, 2330-2335.   DOI
17 Hongping, H., Ray, F. L., Jianxi, Z., 2004, Infrared study of $HDTMA^+$ intercalated montmorillonite, Spectrochim. Acta Part A, 60, 2853-2859.   DOI
18 Sora, I. N., Pelosato, R., Zampori, L., Botta, D., Dotelli, G., Vitelli, M., 2005, Matrix optimisation for hazardous organic waste sorption, Appl. Clay Sci., 28, 43-54.   DOI
19 El-Nahhal, Y., Undabeytia, T., polubesova, T., Mishael, Y. G., Nir, S., Rubin, B., 2001, Organo-clay formulations of pesticides: reduced leaching and photodegradation, Appl. Clay Sci., 18, 309-326.   DOI
20 Groisman, L., Rav-Acha, C. Gerstl, Z., Mingelgrin, U., 2004, Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long-and short-chain organoclays, Appl. Clay Sci, 24, 159-166.   DOI
21 Kah, M., Brown, C. D., 2007, Prediction of the adsorption of ionizable pesticides in soils, J. Agric. Food Chem., 55, 2312-2322.   DOI
22 Kao, C. M., Lei, S. E., 1999, Using a peat biobarrier to remediated PCE/TCE contaminated aquifers, Water Res., 34(3), 835-845.
23 Kao, C. M, Chen, S. C., Wang, J. Y., Chen, Y. L., Lee, S. Z., 2003a, Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies, Water Res., 37, 27-38.   DOI
24 Kao, C. M., Chen, Y. L., Chen, S. C., Yeh, T. Y., Wu, W. S., 2003b, Enhanced PCE dechlorination by biobarrier systems under different redox conditions, Water Res., 37, 4885-4894.   DOI
25 Kim, D. G., Song, D.-I., Jeon, Y. W., 2001, pH-dependent sorptions of phenolic compounds onto montmorillonite modified with hexadecyltrimethylammonium cation, Sep. Sci. Technol., 36(14), 3159-3174.   DOI
26 Akbal, F. O., Akdemir, N., Onar, A. N., 2000, FT-IR spectroscopic detection of pesticide after sorption onto modified pumice, Talanta, 53, 131-135.   DOI
27 Kim, J.-H., Shin, W. S., Song, D.-I., Choi, S. J., 2005, Multi-step competitive sorption and desorption of chlorophenols in surfactant modified montmorillonite, Water Air Soil Pollut., 166, 367-380.   DOI
28 Kumar, S., Yong, W., 2002, Effect of bentonite on compacted clay landfill barriers, Soil Sed. Contam., 11(1), 71-89.   DOI
29 Abollino, O., Giacomino, A., Malandrino, M., Mentasti, E., 2008, Interaction of metal ions with montmorillonite and vermiculite, Appl. Clay Sci., 38, 227-236.   DOI
30 Allison, L. E., 1960, Wet-combustion apparatus and procedure for organic and inorganic carbon in soil, Soil Sci. Soc. Am. J., 24, 36-40.   DOI
31 Apiratikul, R., Pavasant, P., 2008, Sorption of $Cu^{2+},\;Cd^{2+},\;and\;Pb^{2+}$ using modified zeolite from coal fly ash, Chem. Eng. J., 144, 245-258.   DOI
32 Appel, C., Ma, L., 2002, Concentration, pH, and surface charge effects on cadmium and lead sorption, J. Environ. Qual., 31, 581-589.   DOI
33 Appel, C., Ma, L. Q., Rhue, R. D., Kenelley, E., 2003, Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility, Geoderma, 113, 77-93.   DOI   ScienceOn
34 Azejjel, H., del Hoyo, C., Draoui, K., Rodriguez-Cruz, M. S., Sanchez-Martin, M. J., 2009, Natural and modified clays from Morocco as sorbents of ionizable herbicides in aqueous medium, Desalination, 249, 1151-1158.   DOI
35 감상규, 김길성, 안병준, 이민규, 2002, 천연 및 합성 제올 라이트의 Triadimefon 흡.탈착 특성, Hwahak Konghak, 40(2), 265-273.
36 Cater, A. D., 2000, Herbicide movement in soils: principles, pathways and processes, Weed Res., 40, 113-122.   DOI
37 Chen, B., Zhu, L., Zhu, J., 2005, Configurations of the bentonite-sorbed myristyl pyridinium cation and their influences on the uptake of organic compounds, Environ. Sci. Technol., 39, 6093-6100.   DOI
38 Celis, R., Koskinen, W. C., Hermosin, M. C., Cornejo, J., 1999, Sorption and desorption of triadimefon by soils and model soil colloids, J. Agric. Food. Chem., 47, 776-781.   DOI
39 김지훈, 2001, HDTMA-몬모릴로나이트에서 염화페놀류 화합물의 수착과 탈착시 pH의 영향, 석사학위논문, 경북대학교.
40 김한상, 유승곤, 정종헌, 박광규, 2003, 화학적으로 표면 처리된 활성탄섬유 디스크에 의한 코발트이온의 전기흡착, Hwahak Konghak, 41(6), 744-748.
41 박찬수, 정영욱, 박중섭, 백원석, 신원식, 천병식, 한우선, 박재우, 2007, 매립지 침출수 처리를 위한 폴리우레탄과 개질토의 특성 분석 실험에 관한 연구, 한국물환경학회지, 23(2), 281-286.   과학기술학회마을
42 이성희, 전영웅, 송동익, 1998, 점토 고정 계면활성제에 의한 유기 염료의 흡착, 대한환경공학회지, 20(7), 957-965.
43 이용두, 김상구, 송미정, 최근주, 2006, 살포농약의 토양중에서 거동 및 농약의 활성탄 흡착능 평가, 한국수처리학회지, 14(4), 25-32.
44 환경부, 2010, 토양오염공정시험기준, 토양환경보전법.