• 제목/요약/키워드: Point bearing capacity

검색결과 96건 처리시간 0.021초

Investigation on the failure mechanism of steel-concrete steel composite beam

  • Zou, Guang P.;Xia, Pei X.;Shen, Xin H.;Wang, Peng
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1183-1191
    • /
    • 2016
  • The internal crack propagation, the failure mode and ultimate load bearing capacity of the steel-concrete-steel composite beam under the four-point-bend loading is investigated by the numerical simulation. The results of load - displacement curve and failure mode are in good agreement with experiment. In order to study the failure mechanism, the composite beam has been modeled, which part interface interaction between steel and concrete is considered. The results indicate that there are two failure modes: (a) When the strength of the interface is lower than that of the concrete, failure happens at the interface of steel and concrete; (b) When the strength of the interface is higher than that of the concrete, the failure modes is cohesion failure, i.e., and concrete are stripped because of the shear cracks at concrete edge.

씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향 (Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing)

  • 방경보;최용훈;조용주
    • Tribology and Lubricants
    • /
    • 제34권5호
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

확인코어공이 현장타설말뚝의 선단지지력에 미치는 영향 (Effect of verification core hole on tip capacity)

  • 윤희정
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.435-441
    • /
    • 2010
  • In this study, numerical simulations were carried out to investigate the effect of verification core hole on the shaft tip capacity. The verification core extreted at shaft tip may deteriorate the shaft tip capacity when the clay shales (Taylor Marl) surrounding the shaft degrades and the empty core hole remains unfilled. Series of finite element analyses were conducted using Mohr-Coulomb model with total stress material parameters that were obtained from laboratory testing. The numerical analyses indicate that the shaft tip capacity does not decrease for most cases, and the maximum reduction does not exceed 5%.

  • PDF

Compression test of RCFT columns with thin-walled steel tube and high strength concrete

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.391-402
    • /
    • 2011
  • It is clear from the former researches on reinforced concrete filled steel tubular (RCFT) structures that RCFT structures have higher strength and deformation capacity than concrete filled steel tubular (CFT) structures. However, in the case of actual applications to large-scaled structures, the thin-walled steel tube must be used from the view point of economic condition. Therefore, in this study, compression tests of RCFT columns which were made by thin-walled steel tube or small load-sharing ratio in cooperation with high strength concrete were carried out, meanwhile corresponding tests of CFT, reinforced concrete (RC), pure concrete and steel tube columns were done to compare with RCFT. By the a series of comparison and analysis, characteristics of RCFT columns were clarified, and following conclusions were drawn: RCFT structures can effectively avoided from brittle failure by the using of reinforcement while CFT structures are damaged due to the brittle failure; with RCFT structures, excellent bearing capacity can be achieved in plastic zone by combining the thin-walled steel tube with high strength concrete and reinforcement. The smaller load-sharing ratio can made the reinforcement play full role; Combination of thin-walled steel tube with high strength concrete and reinforcement is effective way to construct large-scaled structures.

Experimental and analytical research on geopolymer concrete beams reinforced with GFRP bars

  • Suleyman Anil Adakli;Serkan Tokgoz;Sedat Karaahmetli;Cengiz Dundar
    • Structural Engineering and Mechanics
    • /
    • 제91권4호
    • /
    • pp.335-347
    • /
    • 2024
  • This paper presents the behavior of geopolymer concrete beams reinforced with glass fiber reinforced polymer (GFRP) bars. In the study, ordinary Portland cement concrete and geopolymer concrete beams having GFRP bars were prepared and tested under four-point loading. The load-deflection diagrams and load capacities of the tested beams were obtained. It was observed that the tested beams exhibited good ductility and significant deflection capacity. The results showed that increasing the tension GFRP reinforcement ratio caused enhancement in the strength capacity of geopolymer concrete beams. In addition, the tested beams were analyzed to obtain the load capacity and the load-deflection responses. The theoretical load-deflection curves and load bearing capacities have been predicted well with the test results. Parametric study has been performed to determine the influences of concrete strength, shear span to depth ratio (a/d) and reinforcement ratio on the behavior of geopolymer concrete beams longitudinally reinforced with GFRP bars. It was concluded that increasing concrete strength led to an increase in load capacity. Besides, the ultimate load increased as the reinforcement ratio increased. On the other hand, increasing a/d ratio reduced the ultimate load value of GFRP reinforced geopolymer concrete beams.

Seismic performance of RCS beam-column joints using fiber reinforced concrete

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy;Nguyen, Hoang Quan
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.599-607
    • /
    • 2020
  • This paper deals with the experimental investigation on the behavior of RCS beam-column exterior joints. Two full-scale specimens of joints between reinforced concrete columns and steel beams are tested under cyclic loading. The objective of the test is to study the effect of steel fiber reinforced concrete (SFRC) on the seismic behavior of RCS joints. The load bearing capacity, story drift capacity, ductility, energy dissipation, and stiffness degradation of specimens are evaluated. The experimental results point out that the FRC joint is increased 20% of load carrying capacity and 30% of energy dissipation capacity in comparison with the RC joint. Besides, the FRC joint shown lower damage and better ductility than RC joint.

Crack effect on the elastic buckling behavior of axially and eccentrically loaded columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.169-184
    • /
    • 2006
  • A close form solution of the maximum deflection for cracked columns with rectangular cross-sections was developed and thus the elastic buckling behavior and ultimate bearing capacity were studied analytically. First, taking into account the effect of the crack in the potential energy of elastic systems, a trigonometric series solution for the elastic deflection equation of an arbitrary crack position was derived by use of the Rayleigh-Ritz energy method and an analytical expression of the maximum deflection was obtained. By comparison with the rotational spring model (Okamura et al. 1969) and the equivalent stiffness method (Sinha et al. 2002), the advantages of the present solution are that there are few assumed conditions and the effect of axial compression on crack closure was considered. Second, based on the above solutions, the equilibrium paths of the elastic buckling were analytically described for cracked columns subjected to both axial and eccentric compressive load. Finally, as examples, the influence of crack depth, load eccentricity and column slenderness on the elastic buckling behavior was investigated in the case of a rectangular column with a single-edge crack. The relationship of the load capacity of the column with respect to crack depth and eccentricity or slenderness was also illustrated. The analytical and numerical results from the examples show that there are three kinds of collapse mechanisms for the various states of cracking, eccentricity and slenderness. These are the bifurcation for axial compression, the limit point instability for the condition of the deeper crack and lighter eccentricity and the fracture for higher eccentricity. As a result, the conception of critical transition eccentricity $(e/h)_c$, from limit-point buckling to fracture failure, was proposed and the critical values of $(e/h)_c$ were numerically determined for various eccentricities, crack depths and slenderness.

연결보가 있는 벽식 구조물의 내진성능 평가 (Evaluation of Seismic Performance of Bearing Wall Structure with Coupling Beam)

  • 이영욱;저우타오
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.1049-1052
    • /
    • 2008
  • 내력벽시스템에 사용되는 연결보는 횡변위 조절을 위하여 효과적으로 사용되는 요소이나, 단면의 폭과 춤이 시스템에 의하여 제한되므로 연성능력을 향상시키기 위한 철근의 상세처리가 어럽다. 이러한 이유로 지진에 의하여 횡력이 발생할 경우 가장 먼저 연결보에 손상이 발생하게 될 것이므로, 본 연구에서는 연결보가 있는 내력벽 시스템의 성능을 평가하고자 하였다. 이러한 성능평가는 FEMA 400의 수정된 등가 선형의 절차에 의하여 수행되었다. 평가를 위한 모델은 15층이고 연결보의 강성은 변동이 없으며 질량을 변화하여 구조물의 주기를 변화하였다. 요구 스펙트럼 산정은 KBC 2005의 계수를 곱하지 않은 스펙트럼을 사용하였다. 성능 평가 결과로서, 토질 SD에 대하여 대부분의 모델에서 인명안전 수준에서 검토된 연결보의 제한 변위가 성능점 보다 작게 나타났다. 전반적으로 시스템의 주기가 짧아질수록 연결보의 손상도에 의하여 성능점이 감소되는 현상을 나타내었다.

  • PDF

Study on The Preparation and Mechanical Properties of Fiberglass Reinforced Wood-Based Composite

  • Zhang, Yang;Ma, Yan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권4호
    • /
    • pp.505-514
    • /
    • 2016
  • To study mechanical properties of fiberglass reinforced wood-based composite (FRWC), fiberglass with a diameter of $20{\mu}m$ was selected to prepare test specimens. Mechanical properties of fiberglass reinforced wood-based composite were determined by three-point-bending test while its microstructure was characterizes by scanning electron microscopy (SEM). The results showed that mechanical properties of fiberglass reinforced wood-based composite were superior to that of the wood fiberboard based on the contrasting mechanical curves and the analysis of fracture mechanism. It is believed that the material design with this "sandwich" structure brings a unique buffering capacity of fiberglass into play in the composites. So the specimen did not produce a sudden fracture failure at high level of applied loads because it had a bearing ability. The SEM analysis showed that the working strength of PVAc adhesive was high; under a bearing force, it could properly transfer a load. In addition, glass fiber mesh and wood fiber board combined well.

사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연속 연구(V) - 매개변수 수치해석 자료 분석 - (Study(V) on Development of Charts and Equations Predicting Allowable Compressive Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Analysis of Results and Data by Parametric Numerical Analysis -)

  • 박민철;권오균;김채민;윤도균;최용규
    • 한국지반공학회논문집
    • /
    • 제35권10호
    • /
    • pp.47-66
    • /
    • 2019
  • 본 연구에서는 사질토층을 지나 풍화암에 4D 소켓된 매입 PHC말뚝에 대하여 PHC말뚝 직경과 길이 및 사질토 지반의 N값에 따른 매개변수 수치해석을 실시하였다. PHC말뚝과 지반은 Mohr-Coulomb의 탄 소성모델을 적용하였으며, 말뚝 주변 경계면은 가상두께의 인터페이스를 설정하였다. 10종류 직경의 PHC말뚝에 대한 수치해석 결과를 분석하여 사질토의 N값에 따른 말뚝머리 하중-침하 곡선과 말뚝의 근입길이에 따른 축하중 분포도 곡선을 구하였다. 또한 이들 결과로부터 각 하중 성분과 침하 사이의 관계 곡선을 구하였으며, 하중 성분은 전체 하중, 전체 주면마찰하중, 사질토의 주면마찰하중, 풍화암의 주면마찰하중 및 풍화암의 선단하중으로 구분하였다. 수치해석으로부터 구한 하중-침하 곡선에서 변곡상태가 나타나는 하중을 분석한 결과, 대체로 변곡상태를 나타내는 하중 단계는 말뚝 직경의 약 5~7% 수준의 침하량으로 나타났으며, 안전측으로 말뚝직경의 5% 침하량에 해당하는 하중으로 평가하였다. 이 하중 단계를 동원지지력($Q_m$)으로 정의하였으며, 본 연구의 지지력 분석에 사용하였다. 매개변수 수치해석 결과, PHC 말뚝 직경, 상대근입길이 및 사질토의 N값에 관계없이 SRF는 평균적으로 70% 이상으로 나타났다. 또한 전체마찰지지력에서 사질토의 주면마찰지지력이 평균 80% 이상으로 나타났다. 이러한 결과는 매입 PHC말뚝의 지지력 산정에 이용할 수 있으며, 또한 새로운 지지력 산정방법 제안을 위한 연구에도 활용할 수 있을 것으로 판단된다.