• Title/Summary/Keyword: Point Preprocessing

Search Result 135, Processing Time 0.022 seconds

Implementation of the Panoramic System Using Feature-Based Image Stitching (특징점 기반 이미지 스티칭을 이용한 파노라마 시스템 구현)

  • Choi, Jaehak;Lee, Yonghwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.61-65
    • /
    • 2017
  • Recently, the interest and research on 360 camera and 360 image production are expanding. In this paper, we describe the feature extraction algorithm, alignment and image blending that make up the feature-based stitching system. And it deals with the theory of representative algorithm at each stage. In addition, the feature-based stitching system was implemented using OPENCV library. As a result of the implementation, the brightness of the two images is different, and it feels a sense of heterogeneity in the resulting image. We will study the proper preprocessing to adjust the brightness value to improve the accuracy and seamlessness of the feature-based stitching system.

  • PDF

Deep Learning Method for Identification and Selection of Relevant Features

  • Vejendla Lakshman
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.212-216
    • /
    • 2024
  • Feature Selection have turned into the main point of investigations particularly in bioinformatics where there are numerous applications. Deep learning technique is a useful asset to choose features, anyway not all calculations are on an equivalent balance with regards to selection of relevant features. To be sure, numerous techniques have been proposed to select multiple features using deep learning techniques. Because of the deep learning, neural systems have profited a gigantic top recovery in the previous couple of years. Anyway neural systems are blackbox models and not many endeavors have been made so as to examine the fundamental procedure. In this proposed work a new calculations so as to do feature selection with deep learning systems is introduced. To evaluate our outcomes, we create relapse and grouping issues which enable us to think about every calculation on various fronts: exhibitions, calculation time and limitations. The outcomes acquired are truly encouraging since we figure out how to accomplish our objective by outperforming irregular backwoods exhibitions for each situation. The results prove that the proposed method exhibits better performance than the traditional methods.

The Effect of the Telephone Channel to the Performance of the Speaker Verification System (전화선 채널이 화자확인 시스템의 성능에 미치는 영향)

  • 조태현;김유진;이재영;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.12-20
    • /
    • 1999
  • In this paper, we compared speaker verification performance of the speech data collected in clean environment and in channel environment. For the improvement of the performance of speaker verification gathered in channel, we have studied on the efficient feature parameters in channel environment and on the preprocessing. Speech DB for experiment is consisted of Korean doublet of numbers, considering the text-prompted system. Speech features including LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair) are analyzed. Also, the preprocessing of filtering to remove channel noise is studied. To remove or compensate for the channel effect from the extracted features, cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl) are applied. Also by presenting the speech recognition performance on each features and the processing, we compared speech recognition performance and speaker verification performance. For the evaluation of the applied speech features and processing methods, HTK(HMM Tool Kit) 2.0 is used. Giving different threshold according to male or female speaker, we compare EER(Equal Error Rate) on the clean speech data and channel data. Our simulation results show that, removing low band and high band channel noise by applying band pass filter(150~3800Hz) in preprocessing procedure, and extracting MFCC from the filtered speech, the best speaker verification performance was achieved from the view point of EER measurement.

  • PDF

Multi-resolution Representation of 2D Point Data (2차원 점 데이터의 다중해상도 표현)

  • Yun, Seong-Min;Lee, Mun-Bae;Park, Sang-Hun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.7
    • /
    • pp.768-774
    • /
    • 2010
  • Reconstruction of implicit surfaces from scattered point data sets have been developed in various engineering and scientific studies. In this paper, we represent a method to construct functions of 2D point data using multi-scale kernels and show it can be applied to graphics applications needed to access data in real-time. Our approach is similar to previous work in that a set of coefficients of the functions are calculated and stored in the preprocessing stage and function values at arbitrary positions are evaluated for real-time applications, however, it is different from others in that users can choose detail levels freely in real-time processing stage. The reason why the functions implicitly supports multi-resolution results from the mathematical properties of multi-scale kernels, and proposed method can be expanded to represent multi-resolution functions of n-dimensional data.

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.

Robust Reference Point and Feature Extraction Method for Fingerprint Verification using Gradient Probabilistic Model (지문 인식을 위한 Gradient의 확률 모델을 이용하는 강인한 기준점 검출 및 특징 추출 방법)

  • 박준범;고한석
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.95-105
    • /
    • 2003
  • A novel reference point detection method is proposed by exploiting tile gradient probabilistic model that captures the curvature information of fingerprint. The detection of reference point is accomplished through searching and locating the points of occurrence of the most evenly distributed gradient in a probabilistic sense. The uniformly distributed gradient texture represents either the core point itself or those of similar points that can be used to establish the rigid reference from which to map the features for recognition. Key benefits are reductions in preprocessing and consistency of locating the same points as the reference points even when processing arch type fingerprints. Moreover, the new feature extraction method is proposed by improving the existing feature extraction using filterbank method. Experimental results indicate the superiority of tile proposed scheme in terms of computational time in feature extraction and verification rate in various noisy environments. In particular, the proposed gradient probabilistic model achieved 49% improvement under ambient noise, 39.2% under brightness noise and 15.7% under a salt and pepper noise environment, respectively, in FAR for the arch type fingerprints. Moreover, a reduction of 0.07sec in reference point detection time of the GPM is shown possible compared to using the leading the poincare index method and a reduction of 0.06sec in code extraction time of the new filterbank mettled is shown possible compared to using the leading the existing filterbank method.

Detection of QRS Feature Based on Phase Transition Tracking for Premature Ventricular Contraction Classification (조기심실수축 분류를 위한 위상 변이 추적 기반의 QRS 특징점 검출)

  • Cho, Ik-sung;Yoon, Jeong-oh;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.427-436
    • /
    • 2016
  • In general, QRS duration represent a distance of Q start and S end point. However, since criteria of QRS duration are vague and Q, S point is not detected accurately, arrhythmia classification performance can be reduced. In this paper, we propose extraction of Q, S start and end point RS feature based on phase transition tracking method after we detected R wave that is large peak of electrocardiogram(ECG) signal. For this purpose, we detected R wave, from noise-free ECG signal through the preprocessing method. Also, we classified QRS pattern through differentiation value of ECG signal and extracted Q, S start and end point by tracking direction and count of phase based on R wave. The performance of R wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 99.60%. PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction(PVC). The achieved scores indicate the average detection rate of 94.12% in PVC.

A Study on Loose Part Monitoring System in Nuclear Power Plant Based on Neural Network

  • Kim, Jung-Soo;Hwang, In-Koo;Kim, Jung-Tak;Moon, Byung-Soo;Lyou, Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.95-99
    • /
    • 2002
  • The Loose Part Monitoring System(LPMS) has been designed to detect. locate and evaluate detached or loosened parts and foreign objects in the reactor coolant system. In this paper, at first, we presents an application of the back propagation neural network. At the preprocessing step, the moving window average filter is adopted to reject the reject the low frequency background noise components. And then, extracting the acoustic signature such as Starting point of impact signal. Rising time. Half period. and Global time, they are used as the inputs to neural network . Secondly, we applied the neural network algorithm to LPMS in order to estimate the mass of loose parts. We trained the impact test data of YGN3 using the backpropagation method. The input parameter for training is Rising clime. Half Period amplitude. The result shored that the neural network would be applied to LPMS. Also, applying the neural network to thin practical false alarm data during startup and impact test signal at nuclear power plant, the false alarms are reduced effectively.

The accurate measurement of center position and orientation of SMD VR by using machine vision (머신비젼을 이용한 SMD VR의 중심위치와 홈방향 정밀계측)

  • Jhang, Kyung-Young;Kim, Byung-Yup;Han, Chang-Su;Park, Jong-Hyun;Gam, Do-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1339-1347
    • /
    • 1997
  • The automation of final inspection and tuning process in the manufacturing of electric products is hot issue now, because it is the only part that has not been wholey automized yet, mainly due to the difficulties to handle so small size of VR which is the final tuning point in the most of electric products. For the automation of this process, at first the accurate measurement of position and orientation of SMD VR on PCB in real time is strongly needed. In this paper, a new image processing algorithm to detect the center position and orientation of target VR by using machine vision is proposed for automatic final tuning of the 8mm camcoder's performance. In the method, the outline feature of object is used actively. The usefulness of the proposed methods were tested by several experiments, and the results showed enough accuracy for both of position and orientation. Additatively, we discussed about the total visual system construction and preprocessing of image.

Classification Technique of Kaolin Contaminants Degree for Polymer Insulator using Electromagnetic Wave (방사전자파를 이용한 고분자애자의 오손량 분류기법)

  • Park Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.162-168
    • /
    • 2006
  • Recently, diagnosis techniques have been investigated to detect a Partial Discharge associated with a dielectric material defect in a high voltage electrical apparatus, However, the properties of detection technique of Partial Discharge aren't completely understood because the physical process of Partial Discharge. Therefore, this paper analyzes the process on surface discharge of polymer insulator using wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time~frequency domain. As it is important to develop a non-contact method for detecting the kaolin contamination degree, this research analyzes the electromagnetic waves emitted from Partial Discharge using wavelet transform. This result experimentally shows the process of Partial Discharge as a two-dimensional distribution in the time-frequency domain. Feature extraction parameter namely, maximum and average of wavelet coefficients values, wavelet coefficients value at the point of $95\%$ in a histogram and number of maximum wavelet coefficient have used electromagnetic wave signals as input signals in the preprocessing process of neural networks in order to identify kaolin contamination rates. As result, root sum square error was produced by the test with a learning of neural networks obtained 0.00828.