• Title/Summary/Keyword: Point Heating System

Search Result 193, Processing Time 0.052 seconds

Suggestion of the Worth Evaluation of Cool Air and the Allocation Methodology of Cooling Cost (냉기의 가치평가 및 냉방비 배분방법론 제안)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.201-208
    • /
    • 2009
  • Our government will make a plan regulating the cooling limit temperature of the summer season to 26 degree and the heating limit temperature of the winter season to 20 degree for energy saving. Where, the key point of this politic pursuit can be the charge system on heating and cooling cost. We have suggested new cost allocation methodology as a worth evaluation method in the precedent study, and preformed the worth evaluation and cost allocation on four kind of warm air produced from a heating system as an example. In this study, we applied the suggested method to four kind of cool air, and preformed the worth evaluation and cost allocation on each cool air. As a result, similarly to the precedent study, the more energy a customer saved, the more cooling unit cost decreased, and the more energy a customer consumed, the more cooling unit cost increased. From this analysis, we hope that the suggested methodology can offer a theoretical basis to the energy charge policy of government, and induce the spontaneous energy saving of consumers.

Mechanical Property and Process Variables Optimization of Tube-to-Tube Friction Welding for Steel Pipe with 36 mm External Diameter (외경 36mm 강관의 관대관 마찰용접 특성과 공정 변수 최적화)

  • Kong, Yu-Sik;Park, Young Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.2
    • /
    • pp.50-56
    • /
    • 2014
  • Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, for the friction welding with tube-to-tube shape, the feasibility of industry application was determined using analyzing mechanical properties of weld and optimized welding variables was suggested. In order to accomplish this object, rotating speed, friction heating pressure, and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. Weld characteristic was investigated in terms of weld shape and metal loss, and 7mm of metal loss was regarded as the optimal metal loss. By tensile test, tensile strength and yielding strength was measured and fracture was occurred at base metal. In order to optimize the welding condition, fitness function was defined with respect to metal loss and yielding strength and the fitness values for each welding condition could be calculated in experimental range. Consequently, we set the optimal welding condition as the point which had maximum value of fitness function. As the result of this paper the optimal welding variables could be suggested as rotating speed was 1300 rpm, friction heating pressure was 15 MPa, and friction heating time was 10 sec.

Engineering Practice for ESS Protection by means of One Point Grounding System (일점접지방식을 이용한 전자교환기 방호의 실제)

  • Kim, Soo-Hyung;Seo, Jung-Uck
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.502-505
    • /
    • 1988
  • This paper is to demonstrate the effectiveness of one point grounding in support of ESS protection. One point grounding provides for the dispatching of excess energy for protection of switching equipment and personnel from lightning discharge hazards and for a natural sink for noise from atmospheric lightning and power transients. In most ESS installations there are a number of different items that must be maintained at a common ground potential for safety, fault protection or noise reduction. The items typically consist of power systems, heating and ventilating systems, distributing frames, repeating equipmets, switching equipments, etc. Grounding system of an ESS Office is most effective when all the ground points are connected to a single, common earth. The one point grounding prvides a common reference potential, keeping all the items of telecommunications facility free from the earth current and voltage hazards.

  • PDF

Effect of Heating by Nano-Carbon Fiber Infrared Lamps on Growth and Vase Life of Cut Roses and Heating Cost (나노탄소섬유 적외선등 난방이 절화장미의 생육과 수명 및 난방비에 미치는 영향)

  • Lim, Mi-Young;Ko, Chung-Ho;Son, Moon-Sook;Lee, Sang-Bok;Kim, Gil-Ju;Kim, Byung-Soo;Kim, Young-Bok;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The greatest and major cost for cut rose production during winter seasons in Korea is cost of heating the greenhouse. A study was conducted on a cost-efficient heating system to reduce expenses of cut rose growers in times of high energy prices. An infrared heating system utilizing radiant energy has an obvious advantage over other heating methods in that the energy is first used to raise temperatures of plants and other objects and subsequently that of the atmosphere, resulting in faster reaching to desired plant temperatures at a reduced heating cost. In this study the heating effect and heating cost saving of a nano-carbon fiber infrared heating system (NCFIHS) installed in cut rose greenhouses in Gimhae, Gyeongnam Province were analyzed comparatively. In addition growth, quality, and vase life of 'Orange Fresh' roses grown in greenhouses heated by NCFIHS against those grown in greenhouses heated by so called an electrical heating system. In greenhouses with a NCFlHS with a set point air temperature of $20^{\circ}C$, plant temperature was maintained at $1{\sim}2^{\circ}C$ higher than the air temperature, and temperatures of growing bed surface and root zone were maintained at $17{\sim}19^{\circ}C$ throughout cold winter nights. The cost for heating in NCFIHS was about 25 and 51% of that of an electrical heating system and a hot water heating system heated by petroleum, respectively. Growth of roses harvested in greenhouses with a NCFIHS was similar to those grown in greenhouses with an electrical heating system. However, cut roses with more intense petal and leaf colors and a longer vase life (fresh weight and amount of water uptake) were harvested in greenhouses with a NCFIHS as compared to those harvested in greenhouses with an electrical heating system.

Freeze Protection for Passive Solar Water Heating System in Bitter Cold Areas (혹한기 지역에서의 자연순환형 태양열 시스템 동파방지)

  • Kwon, Jae-Wook;Kim, Jong-Hyun;Hong, Hi-Ki
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.41-46
    • /
    • 2011
  • In the present work, a new freeze protection method has been proposed for a natural circulation system of solar water heater. Though electrothermal wire is popularly used for the purpose, there are freezing troubles by wire cut-off and excessive electric power consumption. In the experimental device, hot water in a storage tank was circulated by a small pump and used to heat the outdoor pipes if the cold water pipe surface temperature falls lower than a set point. As a result, It was observed that there was no hot water waste while the solar water heating system operated without freeze and burst.

Verification of the HACCP System in School Foodservice Operations - Focus on the Microbiological Quality of Foods in Heating Process and After-Heating Process - (학교급식소의 HACCP 시스템 적합성 검증 -가열조리 및 가열조리 후처리 공정의 미생물적 품질평가를 중심으로-)

  • 전인경;이연경
    • Journal of Nutrition and Health
    • /
    • v.36 no.10
    • /
    • pp.1071-1082
    • /
    • 2003
  • The objective of this study was to evaluate and improve the microbiological quality of HACCP application in school foodservice operations. The microbiological quality of foods and utensils were evaluated two times at each critical control point (CCP) with 3M petrifilm in five Daegu elementary schools. Two processes were evaluated: Heating process and after-heating process. The CCPs of the heating process were receiving, cooking and serving temperatures. The CCPs of the after-heating process were personal hygiene, cross contamination avoidance and serving temperature. After the first experiment, 31 employees of five schools were classroom educated, trained on-site, and pre- and post-tested on HACCP-based sanitation with the goal of improving the microbiological quality of the foodservice. Scores representing knowledge of holding, thawing, washing, food temperature, sanitizing and food-borne illness increased after education. In the heating process, internal food temperatures in the first and second experiments were higher than 74$^{\circ}C$, the holding temperature in the first experiment was less than 6$0^{\circ}C$. In the second experiment, the serving temperature improved to a satisfactory level. The microbiological quality in the second experiment improved by decreasing the time from cooking to serving. In the after-heating process, the ingredients were boiled before being cut in the first experiment. In the second experiment, ingredients were cut before being boiled, improving microbiological quality. Also in the second experiment, cooking just before serving food improved its microbiological quality through time-temperature control. These results strongly suggest it is essential to measure microbiological quality regularly and to educate employees on HACCP continuously, especially time-temperature control and cross contamination avoidance in order to improve foodservice quality.

A Study on Microbiological Risk Assessment for the HACCP System Construction of Seasoned Laver (조미김의 HACCP 시스템 구축을 위한 생물학적 위해도 평가 연구)

  • Kim, Kang-Yul;Yoon, Sung-Yee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.268-278
    • /
    • 2013
  • Objectives: The purpose of this study was to apply the Hazard Analysis Critical Control Point (HACCP) system to the production of seasoned laver products. The hazard analysis examined microbial evaluations and developed a HACCP management plan through the heating process. Methods: In this study we chose three companies and performed the analysis thrice. During this study, general bacteria along with other food poisoning bacteria such as Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, E.coil, O157:H7, Vibrio parahaemolyticus, were studied at varying temperatures from 100 to $300^{\circ}C$. Results: The presence of general bacteria was detected in raw laver in the samples analyzed from all the three companies, and the number ranged from $10^5-10^7$. Bacillus cereus was detected in samples from only two of the three companies analyzed. However, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, E.coil, O157:H7, and Vibrio parahaemolyticus were all negative. General bacteria was reduced to $10^5$ after being subjected to temperatures of $100-250^{\circ}C$, but heating to over $270^{\circ}C$ reduced the number to below $10^3$, and the other microbes such as Bacillus cereus were not detected. Conclusions: In conclusion, the heating process ($270-280^{\circ}C$) along with RPM of 100-1200 were identified as CCP to reduce biological hazards.

A Study on the Application Method of Flexible Pipe for District Heating in Korea (지역난방용 Flexible Pipe 활용방안 연구)

  • Lee, Ki-Seb;Park, Nam-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.637-642
    • /
    • 2008
  • The concept of district heating involves centralised heat production where heat is distributed to consumer via a piping network. The objective of this work is to identify the Flexible Pipe from an economy, execution, maintenance point of view. Flexible Pipe has in some countries, especially in Europe, been used for many years in district heating. In spite of years of experience, there still exist doubts about the possibilities of using flexible pipes in district heating applications, mostly because of no experiences in domestic market. The advantage of flexible pipe systems is their flexibility. This holds not only for the inner pipe but also for the total pipe system including insulation and jacket. Even for the largest diameter the minimum radius of curvature is given to 1.5m. The most important difference between flexible pipe systems and preinsulated steel pipes is their simple and quick assembly. Such information could provide a basis for making reasonable hypotheses about consumer preferences, to foam a basis for making future marketing more effective.

  • PDF

Effects of Minimizing the Heating Space on Energy Saving and Hot Pepper(Capsicum annuum L.) Growth in the Plastic Greenhouse (온실 난방공간 최소화가 에너지 절감 및 고추 생육에 미치는 영향)

  • Tae Young Kim;Young Hoe Woo;Ill Hwan Cho;Young Sam Kwon;Si Young Lee;Han Ik Jang
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.213-218
    • /
    • 2001
  • In 2000, domestic protected cultivation area was about 52,189 ha including 13,621 ha of heating greenhouses. Recently, heating cost accounts for 25 to 30% of total production cost which has been increased due to the rise of oil price, while the heating cost was about 15% in other advanced countries. To reduce the heating energy cost, the study of minimizing the heating space of greenhouse have been conducted from 1998 to 1999. The system was developed to control the heating space according to crop growth by moving horizontal curtain up and down. Installation of the heating space-control curtain in greenhouse decreased heating capacity to 264 m$^3$compared to 661.5 m$^3$in the traditional curtain, and consumpted fuel was saved about 56% point in semiforcing culture and 28% point in retarding culture of pepper. In addition, uniform distribution of air temperature and relative humidity in greenhouse environment resulted in earlier flowering and higher yields in hot pepper.

  • PDF

ASCENT THERMAL ANALYSIS OF FAIRING OF SPACE LAUNCH VEHICLE

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.239-242
    • /
    • 2004
  • The fairing of the launch vehicles has a role of protecting the spacecraft from outer thermal, acoustical, and mechanical loads during flight. Among them, the thermal load is analyzed in the present study. The ascent thermal analyses include aerodynamic heating rate on every point of the fairing, heat transfer through the fairing and spacecraft, and the final temperature during ascent flight phase. A design code based on theoretical/experimental database is applied to calculate the aerodynamic heating rate, and a thermal math program, SINDA/Fluint, is considered for conductive heat transfer of the fairing. The results show that the present design satisfies the allowing temperature of the structure. Another important thermal problem, pyro explosive fairing separation device, is calculated because the pyro system is very sensitive to the temperature. The results also satisfies the pyro thermal condition.

  • PDF