• Title/Summary/Keyword: Point Cloud Map Accuracy Evaluation

Search Result 6, Processing Time 0.02 seconds

Map Error Measuring Mechanism Design and Algorithm Robust to Lidar Sparsity (라이다 점군 밀도에 강인한 맵 오차 측정 기구 설계 및 알고리즘)

  • Jung, Sangwoo;Jung, Minwoo;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.189-198
    • /
    • 2021
  • In this paper, we introduce the software/hardware system that can reliably calculate the distance from sensor to the model regardless of point cloud density. As the 3d point cloud map is widely adopted for SLAM and computer vision, the accuracy of point cloud map is of great importance. However, the 3D point cloud map obtained from Lidar may reveal different point cloud density depending on the choice of sensor, measurement distance and the object shape. Currently, when measuring map accuracy, high reflective bands are used to generate specific points in point cloud map where distances are measured manually. This manual process is time and labor consuming being highly affected by Lidar sparsity level. To overcome these problems, this paper presents a hardware design that leverage high intensity point from three planar surface. Furthermore, by calculating distance from sensor to the device, we verified that the automated method is much faster than the manual procedure and robust to sparsity by testing with RGB-D camera and Lidar. As will be shown, the system performance is not limited to indoor environment by progressing the experiment using Lidar sensor at outdoor environment.

Performance Evaluation of Denoising Algorithms for the 3D Construction Digital Map (건설현장 적용을 위한 디지털맵 노이즈 제거 알고리즘 성능평가)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.10 no.4
    • /
    • pp.32-39
    • /
    • 2020
  • In recent years, the construction industry is getting bigger and more complex, so it is becoming difficult to acquire point cloud data for construction equipments and workers. Point cloud data is measured using a drone and MMS(Mobile Mapping System), and the collected point cloud data is used to create a 3D digital map. In particular, the construction site is located at outdoors and there are many irregular terrains, making it difficult to collect point cloud data. For these reasons, adopting a noise reduction algorithm suitable for the characteristics of the construction industry can affect the improvement of the analysis accuracy of digital maps. This is related to various environments and variables of the construction site. Therefore, this study reviewed and analyzed the existing research and techniques on the noise reduction algorithm. And based on the results of literature review, performance evaluation of major noise reduction algorithms was conducted for digital maps of construction sites. As a result of the performance evaluation in this study, the voxel grid algorithm showed relatively less execution time than the statistical outlier removal algorithm. In addition, analysis results in slope, space, and earth walls of the construction site digital map showed that the voxel grid algorithm was relatively superior to the statistical outlier removal algorithm and that the noise removal performance of voxel grid algorithm was superior and the object preservation ability was also superior. In the future, based on the results reviewed through the performance evaluation of the noise reduction algorithm of this study, we will develop a noise reduction algorithm for 3D point cloud data that reflects the characteristics of the construction site.

3D Point Cloud Reconstruction Technique from 2D Image Using Efficient Feature Map Extraction Network (효율적인 feature map 추출 네트워크를 이용한 2D 이미지에서의 3D 포인트 클라우드 재구축 기법)

  • Kim, Jeong-Yoon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.408-415
    • /
    • 2022
  • In this paper, we propose a 3D point cloud reconstruction technique from 2D images using efficient feature map extraction network. The originality of the method proposed in this paper is as follows. First, we use a new feature map extraction network that is about 27% efficient than existing techniques in terms of memory. The proposed network does not reduce the size to the middle of the deep learning network, so important information required for 3D point cloud reconstruction is not lost. We solved the memory increase problem caused by the non-reduced image size by reducing the number of channels and by efficiently configuring the deep learning network to be shallow. Second, by preserving the high-resolution features of the 2D image, the accuracy can be further improved than that of the conventional technique. The feature map extracted from the non-reduced image contains more detailed information than the existing method, which can further improve the reconstruction accuracy of the 3D point cloud. Third, we use a divergence loss that does not require shooting information. The fact that not only the 2D image but also the shooting angle is required for learning, the dataset must contain detailed information and it is a disadvantage that makes it difficult to construct the dataset. In this paper, the accuracy of the reconstruction of the 3D point cloud can be increased by increasing the diversity of information through randomness without additional shooting information. In order to objectively evaluate the performance of the proposed method, using the ShapeNet dataset and using the same method as in the comparative papers, the CD value of the method proposed in this paper is 5.87, the EMD value is 5.81, and the FLOPs value is 2.9G. It was calculated. On the other hand, the lower the CD and EMD values, the better the accuracy of the reconstructed 3D point cloud approaches the original. In addition, the lower the number of FLOPs, the less memory is required for the deep learning network. Therefore, the CD, EMD, and FLOPs performance evaluation results of the proposed method showed about 27% improvement in memory and 6.3% in terms of accuracy compared to the methods in other papers, demonstrating objective performance.

A Study on the Geometric Correction Accuracy Evaluation of Satellite Images Using Daum Map API (Daum Map API를 이용한 위성영상의 기하보정 정확도 평가)

  • Lee, Seong-Geun;Lee, Ho-Jin;Kim, Tae-Geun;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.183-196
    • /
    • 2016
  • Ground control points are needed for precision geometric correction of satellite images, and the coordinates of a high-quality ground control point can be obtained from the GPS measurement. However, considering the GPS measurement requires an excessive amount o f t ime a nd e fforts, there is a need for coming up with an alternative solution to replace it. Therefore, we examined the possibility of replacing the existing GPS measurement with coordinates available at online maps to acquire the coordinates of ground control points. To this end, we examined error amounts between the coordinates of ground control points obtained through Daum Map API, and them compared the accuracies between three types of coordinate transformation equations which were used for geometric correction of satellite images. In addition, we used the coordinate transformation equation with the highest accuracy, the coordinates of ground control point obtained through the GPS measurement and those acquired through D aum M ap A PI, and conducted geometric correction on them to compare their accuracy and evaluate their effectiveness. According to the results, the 3rd order polynomial transformation equation showed the highest accuracy among three types of coordinates transformation equations. In the case of using mid-resolution satellite images such as those taken by Landsat-8, it seems that it is possible to use geometrically corrected images that have been obtained after acquiring the coordinates of ground control points through Daum Map API.

Establishment of Point Cloud Location Accuracy Evaluation Facility for Car-mounted Mobile Mapping System for Mapping of High Definition Road Maps (정밀도로지도 제작을 위한 이동식차량측량시스템(MMS) 점군 위치정확도 성능평가 시설 구축)

  • Oh, Yoon Seuk;Kwon, Young Sam;Park, Il Suk;Hong, Seung Hwan;Lee, Ha Jun;Lee, Tae Kyeong;Chang, Soo Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.383-390
    • /
    • 2020
  • Car-mounted MMS (Mobile Mapping System) is the most effective tool for mapping of high definition road maps(HD Map). The MMS is composed of various sensor combinations, and the manufacturing methods and processing software are different for each manufacturer, performance cannot be predicted only by the specifications of the parts. Therefore, it is necessary to judge whether each equipment is suitable for mapping through performance evaluation, and facilities for periodic performance evaluation. In this paper, we explained the MMS performance evaluation facilities built at the SOC Evaluation Research Center of Korea Institute of Civil Engineering and Building Technology and analyzed the conditions that the evaluation facilities should have through a literature survey and field tests.

Development of Multi-Camera based Mobile Mapping System for HD Map Production (정밀지도 구축을 위한 다중카메라기반 모바일매핑시스템 개발)

  • Hong, Ju Seok;Shin, Jin Soo;Shin, Dae Man
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.587-598
    • /
    • 2021
  • This study aims to develop a multi-camera based MMS (Mobile Mapping System) technology for building a HD (High Definition) map for autonomous driving and for quick update. To replace expensive lidar sensors and reduce long processing times, we intend to develop a low-cost and efficient MMS by applying multiple cameras and real-time data pre-processing. To this end, multi-camera storage technology development, multi-camera time synchronization technology development, and MMS prototype development were performed. We developed a storage module for real-time JPG compression of high-speed images acquired from multiple cameras, and developed an event signal and GNSS (Global Navigation Satellite System) time server-based synchronization method to record the exposure time multiple images taken in real time. And based on the requirements of each sector, MMS was designed and prototypes were produced. Finally, to verify the performance of the manufactured multi-camera-based MMS, data were acquired from an actual 1,000 km road and quantitative evaluation was performed. As a result of the evaluation, the time synchronization performance was less than 1/1000 second, and the position accuracy of the point cloud obtained through SFM (Structure from Motion) image processing was around 5 cm. Through the evaluation results, it was found that the multi-camera based MMS technology developed in this study showed the performance that satisfies the criteria for building a HD map.