• Title/Summary/Keyword: Point Cloud Data

Search Result 495, Processing Time 0.029 seconds

AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD

  • Shimonishi, T.;Kato, D.;Ita, Y.;Onaka, T.;AKARI/IRC LMC team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.83-85
    • /
    • 2017
  • We conducted an unbiased near- to mid-infrared imaging and spectroscopic survey of the Large Magellanic Cloud (LMC) as a part of the AKARI Mission Program "Large-area Survey of the LMC" (LSLMC, PI: T. Onaka). An area of about 10 square degrees of the LMC was observed by five photometric bands (3.2, 7, 11, 15, and $24{\mu}m$) and a low-resolution slitless prism ($2-5{\mu}m$, R ~20) equipped with AKARI /IRC. We constructed and publicly released photometric and spectroscopic catalogues of point sources in the LMC based on the survey data. The catalogues provide a large number of near-infrared spectral data, coupled with complementary broadband photometric data. Combined use of the present AKARI LSLMC catalogues with other infrared point source catalogues of the LMC possesses scientific potential that can be applied to various astronomical studies.

A Multi-Step Digitizing Method and Reverse Model Generation for Improvement of Reverse Engineering Accuracy (역공학의 정밀도 향상을 위한 점 데이터의 다단계 획득 및 역모델 형성)

  • 김권흡;장경열;유우식;박정환;고태조;배석형
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.133-140
    • /
    • 2003
  • This paper describes a Multi-step Digitizing Method and Reverse Model generation algorithm for improvement of reverse engineering accuracy. Reverse engineering is the process of reproducing computational model by directly extracting geometric information on the physical objects. For the improvement of measuring data accuracy, we propose a multi-step digitizing method. First, measuring cloud-of-point by use of a laser scanning system. Second, gathering digitizing data by a scanning touch probe. Fine digitizing plan generated from coarse surface model directly from the cloud-of-point and it allows CMM more accurate scanning data. Finally in this paper we propose the algorithm of generating NURB surface from more accurate measuring points.

Dimension extraction technique for structures using point cloud data

  • Jehee Han;Minseo Jang;SungKwon Woo;Do Hyoung Shin
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.570-576
    • /
    • 2024
  • Recently, digitalization technologies for data analysis have become a global issue. As a result, in the construction market, Building Information Modeling (BIM), which is a core technology of smart construction, is being actively utilized not only in the architectural sector but also in the civil engineering field worldwide. In this study, the process of creating BIM models using a 3D scanner is examined, and automated extraction of numerical information for infrastructures necessary for library creation is conducted. In experiments utilizing infrastructurs such as retaining walls and employing algorithmic methods, the accuracy of cross-sectional numerical information for each retaining wall was confirmed to be over 95%. This enables not only BIM modeling but also the generation of drawings for facilities lacking BIM drawings by confirming the shape information of infrastructures, thus facilitating efficient maintenance.

Gradient field based method for segmenting 3D point cloud (Gradient Field 기반 3D 포인트 클라우드 지면분할 기법)

  • Vu, Hoang;Chu, Phuong;Cho, Seoungjae;Zhang, Weiqiang;Wen, Mingyun;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.733-734
    • /
    • 2016
  • This study proposes a novel approach for ground segmentation of 3D point cloud. We combine two techniques: gradient threshold segmentation, and mean height evaluation. Acquired 3D point cloud is represented as a graph data structures by exploiting the structure of 2D reference image. The ground parts nearing the position of the sensor are segmented based on gradient threshold technique. For sparse regions, we separate the ground and nonground by using a technique called mean height evaluation. The main contribution of this study is a new ground segmentation algorithm which works well with 3D point clouds from various environments. The processing time is acceptable and it allows the algorithm running in real time.

Automatic Extraction of River Levee Slope Using MMS Point Cloud Data (MMS 포인트 클라우드를 활용한 하천제방 경사도 자동 추출에 관한 연구)

  • Kim, Cheolhwan;Lee, Jisang;Choi, Wonjun;Kim, Wondae;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1425-1434
    • /
    • 2021
  • Continuous and periodic data acquisition must be preceded to maintain and manage the river facilities effectively. Adapting the existing general facilities methods, which include river surveying methods such as terrestrial laser scanners, total stations, and Global Navigation Satellite System (GNSS), has limitation in terms of its costs, manpower, and times to acquire spatial information since the river facilities are distributed across the wide and long area. On the other hand, the Mobile Mapping System (MMS) has comparative advantage in acquiring the data of river facilities since it constructs three-dimensional spatial information while moving. By using the MMS, 184,646,009 points could be attained for Anyang stream with a length of 4 kilometers only in 20 minutes. Levee points were divided at intervals of 10 meters so that about 378 levee cross sections were generated. In addition, the waterside maximum and average slope could be automatically calculated by separating slope plane form levee point cloud, and the accuracy of RMSE was confirmed by comparing with manually calculated slope. The reference slope was calculated manually by plotting point cloud of levee slope plane and selecting two points that use location information when calculating the slope. Also, as a result of comparing the water side slope with slope standard in basic river plan for Anyang stream, it is confirmed that inspecting the river facilities with the MMS point cloud is highly recommended than the existing river survey.

An Assessment of the Effectiveness of Cloud Seeding as a Measure of Air Quality Improvement in the Seoul Metropolitan Area (서울에서의 미세먼지 저감을 위한 인공강수 가능성 진단)

  • Song, Jae In;Yum, Seong Soo
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.609-614
    • /
    • 2019
  • Cloud seeding experiment has been proposed as a way to alleviate severe air pollution problem because, if successful, artificially produced precipitation through cloud seeding could scavenge out some portion of air pollutants. As a first step to verify the practicality of such experiment, seedability of the clouds observed in Seoul is assessed by examining statistical characteristics of some relevant meteorological variables. Analyses of 9 years of Korea Meteorological Agency Seoul station data indicate that as PM10 mass concentration increases, cloud amount, liquid water path, and ice water path decrease, but the difference between temperature and dew point temperature tends to increase. Such finding suggests that cloud seeding becomes less feasible as air pollution becomes more severe in the Seoul metropolitan area, at least in a statistical sense. For some individual severe air pollution events, however, seedable clouds may exist and indeed cloud seeding experiments can be successful. Therefore, detailed investigation on cloud seedability for individual severe air pollution events are highly required to make a concrete assessment of cloud seeding as a way to alleviate severe air pollution problem.

Extraction and Utilization of DEM based on UAV Photogrammetry for Flood Trace Investigation and Flood Prediction (침수흔적조사를 위한 UAV 사진측량 기반 DEM의 추출 및 활용)

  • Jung-Sik PARK;Yong-Jin CHOI;Jin-Duk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.237-250
    • /
    • 2023
  • Orthophotos and DEMs were generated by UAV-based aerial photogrammetry and an attempt was made to apply them to detailed investigations for the production of flood traces. The cultivated area located in Goa-eup, Gumi, where the embankment collapsed and inundated inundation occurred due to the impact of 6th Typhoon Sanba in 2012, was selected as rhe target area. To obtain optimal accuracy of UAV photogrammetry performance, the UAV images were taken under the optimal placement of 19 GCPs and then point cloud, DEM, and orthoimages were generated through image processing using Pix4Dmapper software. After applying CloudCompare's CSF Filtering to separate the point cloud into ground elements and non-ground elements, a finally corrected DEM was created using only non-ground elements in GRASS GIS software. The flood level and flood depth data extracted from the final generated DEM were compared and presented with the flood level and flood depth data from existing data as of 2012 provided through the public data portal site of the Korea Land and Geospatial Informatix Corporation(LX).

Development of An Inspection Method for Defect Detection on the Surface of Automotive Parts (자동차 부품 형상 결함 탐지를 위한 측정 방법 개발)

  • Park, Hong-Seok;Tuladhar, Upendra Mani;Shin, Seung-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.452-458
    • /
    • 2013
  • Over the past several years, many studies have been carried out in the field of 3D data inspection systems. Several attempts have been made to improve the quality of manufactured parts. The introduction of laser sensors for inspection has made it possible to acquire data at a remarkably high speed. In this paper, a robust inspection technique for detecting defects in 3D pressed parts using laser-scanned data is proposed. Point cloud data are segmented for the extraction of features. These segmented features are used for shape matching during the localization process. An iterative closest point (ICP) algorithm is used for the localization of the scanned model and CAD model. To achieve a higher accuracy rate, the ICP algorithm is modified and then used for matching. To enhance the speed of the matching process, aKd-tree algorithm is used. Then, the deviation of the scanned points from the CAD model is computed.

Automatic Registration of Point Cloud Data between MMS and UAV using ICP Method (ICP 기법을 이용한 MSS 및 UAV 간 점군 데이터 자동정합)

  • KIM, Jae-Hak;LEE, Chang-Min;KIM, Hyeong-Joon;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.229-240
    • /
    • 2019
  • 3D geo-spatial model have been widely used in the field of Civil Engineering, Medical, Computer Graphics, Urban Management and many other. Especially, the demand for high quality 3D spatial information such as precise road map construction has explosively increased, MMS and UAV techniques have been actively used to acquire them more easily and conveniently in surveying and geo-spatial field. However, in order to perform 3D modeling by integrating the two data set from MMS and UAV, its so needed an proper registration method is required to efficiently correct the difference between the raw data acquisition sensor, the point cloud data generation method, and the observation accuracy occurred when the two techniques are applied. In this study, we obtained UAV point colud data in Yeouido area as the study area in order to determine the automatic registration performance between MMS and UAV point cloud data using ICP(Iterative Closet Point) method. MMS observations was then performed in the study area by dividing 4 zones according to the level of overlap ratio and observation noise with based on UAV data. After we manually registered the MMS data to the UAV data, then compared the results which automatic registered using ICP method. In conclusion, the higher the overlap ratio and the lower the noise level, can bring the more accurate results in the automatic registration using ICP method.

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF