• Title/Summary/Keyword: Pocket milling

Search Result 18, Processing Time 0.019 seconds

Improvement of the Accuracy in Machining Deep Pocket by Up Milling (상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

A Partitioning Method Recucing the Number of Tool Retractions in Zigzag Pocket Machining (지그재그 포켓 가공에서 공구후퇴 횟수를 줄이기 위한 영역 분할법)

  • 서경천;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.215-221
    • /
    • 2001
  • In the zigzag milling of a pocket having islands, tool retraction is one of the primary factors that decrease productivity. Therefore, tool path with minimum number of tool retraction has been needed. Most researches about this topic have been concentrated on obtaining the optimum solution formulated through the geometric reasoning off pocket. Recently, several attempts were made to simplify this problem into region partitioning in order to get the numerically expressed minimum solution. In this research, a method reducing the number of tool retractions extended from existing region partitioning is provided. Applying the segment that is normal to the reference direction of zigzag milling, region partitioning is carried out and structural elements of the region are searched via graphs of islands and characteristic points. Through the processes presented, the number of region partitioned is less than that of existing processes.

  • PDF

A Study on CAD/CAM Pocket Processing using the High Speed Machine (고속가공기를 이용한 CAD/CAM 포켓가공에 관한 연구)

  • Yoo, Chun-Hea;Lee, Yuk-Hyung;Song, Joon-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.32-38
    • /
    • 2004
  • Recently, the system of high speed milling(HSM) is widely used for reducing the operation time and maximizing efficiency of work. The most research of high speed milling system is still leaves much to be desired. Specially the research of mass pocket high speed processing with high precision is the first and probably the last. So this paper showed mass pocket processing of high precision with a duralumin and then confirmed a cause of inferior goods through the CAD/CAM pattern simulation and experimentation. And this paper showed high speed processing system reduce the rate of inferior from this optimal pattern.

  • PDF

Modeling Cutter Swept Angle at Cornering Cut

  • Chan, K.W.;Choy, H.S.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.1-12
    • /
    • 2003
  • When milling concave corners, cutter load increases momentarily and fluctuates severely due to concentration and uneven distribution of material stock. This abrupt change of cutter load produces undesirable machining results such as wavy machined surface and cutter breakage. An important factor for studying cutter load in 2.5D pocket milling is the instantaneous Radial Depth of Cut (RDC). However, previous work on RDC under different corner-cutting conditions is lacking. In this different corner shapes. In our work, we express RDC mathematically in terms of the instantaneous cutter engage angle which is defined as Cutter Swept Angle (CSA). An analytical approach for modeling CSA is explained. Finally, examples are shown to demonstrate that the proposed CSA modeling method can give an accurate prediction of cutter load pattern at cornering cut.

Neural network based tool path planning for complex pocket machining (신경회로망 방식에 의한 복잡한 포켓형상의 황삭경로 생성)

  • Shin, Yang-Soo;Suh, Suk-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.32-45
    • /
    • 1995
  • In this paper, we present a new method to tool path planning problem for rough cut of pocket milling operations. The key idea is to formulate the tool path problem into a TSP (Travelling Salesman Problem) so that the powerful neural network approach can be effectively applied. Specifically, our method is composed of three procedures: a) discretization of the pocket area into a finite number of tool points, b) neural network approach (called SOM-Self Organizing Map) for path finding, and c) postprocessing for path smoothing and feedrate adjustment. By the neural network procedure, an efficient tool path (in the sense of path length and tool retraction) can be robustly obtained for any arbitrary shaped pockets with many islands. In the postprocessing, a) the detailed shape of the path is fine tuned by eliminating sharp corners of the path segments, and b) any cross-overs between the path segments and islands. With the determined tool path, the feedrate adjustment is finally performed for legitimate motion without requiring excessive cutting forces. The validity and powerfulness of the algorithm is demonstrated through various computer simulations and real machining.

  • PDF

A Study on the CNC Milling Machining of Thin-wall Part (범용 CNC 밀링에 의한 박막 측벽 파트 가공에 관한 연구)

  • 지성희;이동주;신보성;최두선;제태진;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.83-88
    • /
    • 2001
  • In order to suggest the proper optimal conditions of the CNC milling machining for the Thin-wall surface, some experiments were carried out. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical example for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter for end milling is one of the important factors affecting the cutting cost. In this paper, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF

Manufacture of Buff Die using CAD/CAM Systems (CAD/CAM 시스템을 활용한 세라믹 공구 금형제작)

  • 이종선;김형철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.106-111
    • /
    • 2002
  • The object of this study is a manufacture of burr die using CAD/CAM systems. Systems are consist of AutoCAD, CAM software and CNC milling machine. CAM software is purpose of G-code generation for CNC programming. Then CAM software and CNC milling machine are connect to RS-232-C cable for networking.

  • PDF

Cutting Force Prediction in NC Machining Using a ME Z-map Model (ME Z-map 모델을 이용한 NC 가공의 절삭력 예측)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.86-89
    • /
    • 2002
  • In NC machining, the ability to automatically generate an optimal process plan is an essential step toward achieving automation, higher productivity, and better accuracy. For this ability, a system that is capable of simulating the actual machining process has to be designed. In this paper, a milling process simulation system for the general NC machining was presented. The system needs first to accurately compute the cutting configuration. ME Z-map(Moving Edge node Z-map) was developed to reduce the entry/exit angle calculation error in cutting force prediction. It was shorn to drastically improve the conventional Z-map model. Experimental results applied to the pocket machining show the accuracy of the milling process simulation system.

  • PDF

The Characteristics of High-Speed Machining of Aluminum Wall Using End-Mill (엔드밀을 이용한 알루미늄 측벽 형상의 고속가공 특성)

  • 이우영;최성주;김흥배;손일복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.912-916
    • /
    • 2000
  • The term ‘High Speed Machining’has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry fur the machining of light alloys, notably aluminium. In recent you, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. And the end mill is an important tool in the milling process. A typical examples for the end mill is the milling of pocket and slot in which a lot of material is removed from the workpiece. Therefore the proper selection of cutting parameter fur end milling is one of the important factors affecting the cutting cost. The one of the advantages of HSM is cutting thin-walled part of light alloy like Al(thinkness about 0.1mm). In this paper, firstly, we study characteristics of HSM, and then, we choose the optimal parameters(cutting forces) to cut thin-walled Al part by experiment.

  • PDF