• Title/Summary/Keyword: Pneumatic artificial muscle

Search Result 26, Processing Time 0.039 seconds

Performance Improvement of Pneumatic Artificial Muscle Manipulators Using Magneto-Rheological Brake

  • Ahn, Kyoung-Kwan;Cong Thanh, TU Diep;Ahn, Young-Kong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.778-791
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. Then it is not easy to realize the performance of transient response of pneumatic artificial muscle manipulator (PAM manipulator) due to the changes in the external inertia load with high speed. In order to realize satisfactory control performance, a variable damper-Magneto­Rheological Brake (MRB), is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

Performance Improvement of Pneumatic Artificial Muscle Manipulators using Magneto-Rheological Brake (MR Brake를 이용한 공압근육매니퓰레이터의 지능제어)

  • Ahn, Kyoung-Kwan;Thanh, T.D.C.;Ahn, Young-Kong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.572-575
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. In order to realize satisfactory control performance, a variable damper Magneto Rheological Brake (MRB), Is equipped to the Joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

  • PDF

Modeling and designing a power assist circuit using artificial muscle

  • Kagawa, Toshiharu;Fujita, Toshinori;Kawashima, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.121-126
    • /
    • 1993
  • Artificial muscle actuators are used in various fields. Especially, they are applied to the power assist circuit to make use of their characteristics. The purpose of this paper is to and analyze the power assist circuit using an artificial muscle actuator. As a result, it is found that the operating feeling of the power assist circuit depends mainly on the flow gain of the pneumatic servo valve. The required flow gain is calculated from the proposed model, and the experimental results agreed with the calculated results.

  • PDF

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

Position and Vibration Control of a Flexible Manipulator Using $\mu$-Synthesis ($\mu$-합성법에 의한 유연한 조작기의 위치 및 진동제어)

  • Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3186-3198
    • /
    • 1996
  • When a robot is to have contact with its enviornment, such as a medi-care robot, it would be advantageous for the robot to have a high compliance. For this reason, a robot having not only a flexible link but also an actuator with compliance, is desirable. This paper is concerned with the position and vibration control of 1 degree of freedom flexible robot using a pneumatic artificial muscle actuator. The dynamics of the manipulator assumed to be and Euler-Bernoulli beam are derived on the basis of the linear mathematical modle. Although this pneumatic artifical muscle actuator has many merits for the compliance robot, it is difficult to make an effective control scheme of this system because of ths nonlinearity and uncertainty on the dynamics of the actuator. By designing a controller using .mu.-synthesis, robust performance against measurement noise, various modeling uncertainties on the dynamics of the servo valve, actuator and mainpulator, is achieved. The effectiveness of the proposed control method is illustrated through simulations and experiments.

Teleoperation of Pneumatic Artificial Muscles Based on Joint Stiffness of Master Device (마스터장치의 회전강성을 고려한 공압인공근육의 원격조정)

  • Kim, Ryeong Hyeon;Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1521-1527
    • /
    • 2013
  • This study proposes a wearable master device that can measure the joint stiffness and the angular displacement of a human operator to enhance the adapting capability of a slave system. A lightweight inertial sensor and the exoskeleton mechanism of the master device can make an operator feel comfortable, and artificial pneumatic muscles having a working principle similar to that of human muscles improve the performance of the slave device on emulating what a human operator does. Experimental results revealed that the proposed master/slave system based on the muscle stiffness sensor yielded uniform tracking performance compared with a conventional position-feedback controller when the payload applied to the slave system changed.

Robust control of a flexible manipulator with artificial pneumatic muscle actuators (유연한 공압인공근육로봇의 강건제어)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF

Development of Hand Exoskeleton using Pneumatic Artificial Muscle Combined with Linkage (링키지와 결합된 공압 인공근육을 이용한 손 외골격 제작)

  • Koo, Inwook;Kang, Brian Byunghyun;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1217-1224
    • /
    • 2013
  • In this paper, a hand exoskeleton actuated by air muscles(soft hand exoskeleton) is introduced. Some soft hand exoskeletons have already been developed to overcome the defects of hand exoskeletons based on linkage and pneumatic piston system-they are usually bulky and do not have enough degree of freedom(DOF). However, soft hand exoskeletons still have defects. Their motions are not precise as linkage based hand exoskeletons, because their actuator, such as air muscle is made of soft materials. So we developed a new linkage which is not bulky and has redundant DOF. It is combined with air muscle in a specific way so that it acts as a guide when air muscle is actuated. Some experiments were conducted to evaluate the validity and usability of our hand exoskeleton.

Model Estimation and Precise Position Control of an Antagonistic Actuation with Pneumatic Artificial Muscles (공압형 인공근육을 이용한 상극 구동의 모델 추정 및 정밀 위치제어)

  • Kang, Bong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.533-541
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit with pressure valves. Varying switching frequency to pressure valves from 0.1 Hz to 5 Hz, parameters of a linear model were estimated optimally to predict dynamic characteristics of the antagonistic actuation. A model-base control scheme with estimated parameters was built for the precise trajectory tracking of the antagonistic structure and realized on a reconfigurable embedded control system, CompactRIO. Experimental results showed that the proposed model-based control scheme gave good performance in trajectory tracking comparing with a PD control scheme when square wave and sinusoidal wave were given as references to follow.

Kinematics of an Intrinsic Continuum Robot with Pneumatic Artificial Muscles (공압인공근육을 가진 내부형 연속체로봇의 기구식)

  • Kang, Bong Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.289-296
    • /
    • 2016
  • This study presents the kinematics of an intrinsic continuum robot actuated by pneumatic artificial muscles. The single section of a developed continuum robot consisted of three muscles in parallel. The contraction of each muscle according to applied air pressure produced spatial motions of a distal plate with respect to a base plate. Based on the bending behaviors of artificial muscles, the orientation and position of the end-effector of a continuum robot were formulated using a transformation matrix. The orientation and position was also determined for a single section of the distal plate. A Jacobian matrix relating the contraction rate or the pressure rate of the muscles to the velocity vector of the end-effector was calculated considering the assembled position of actuators between neighboring sections of the robot. Experimental results showed that the motions of the intrinsic continuum robot were accurately estimated by the proposed kinematics.