• 제목/요약/키워드: Pneumatic Cylinder Driving System

검색결과 17건 처리시간 0.018초

공기압 실린더를 이용한 힘과 위치 동시 궤적 추적 제어 (Position and Force Simultaneous Trajectory Tracking Control with a Pneumatic Cylinder Driving System)

  • 조민수;장지성
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.40-47
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control apparatus with pneumatic cylinder driving system is proposed. The pneumatic cylinder driving system that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic actuators. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control apparatus show that the interacting effects of two cylinders are eliminated remarkably and the proposed control apparatus tracks the given position and force trajectory accurately.

  • PDF

공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계 (Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus)

  • 장지성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

2축 공기압 실린더 구동장치의 위치 동기 제어 (Position Synchronous Control of Two Axes Pneumatic Cylinder Driving Apparatus)

  • 장지성
    • 동력기계공학회지
    • /
    • 제8권4호
    • /
    • pp.24-30
    • /
    • 2004
  • In this study, a position synchronous control algorithm applied to two-axes pneumatic cylinder driving apparatus is proposed. The position synchronous control algorithm is composed of position controller and synchronous controller. The position controller is designed to minimize the effect of several nonlinear characteristics peculiar to the pneumatic cylinder driving apparatus on position control performance. The synchronous controller is designed to reduce the synchronous error. The effectiveness of the proposed controller is proved by simulation results.

  • PDF

슬라이딩모드 제어기를 이용한 공기압 실린더 구동장치의 강인제어 (Robust Control of Pneumatic Cylinder Driving System using Sliding Mode Controller)

  • 장지성;한승훈
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.101-109
    • /
    • 2017
  • The pneumatic driving system has advantages such as high output power per weight and low heat generation rate. However, it is difficult to control the position because of its strong non-linearity such as large friction forces compared to driving force, and heat transfer characteristics that change during operation. Therefore, in order to achieve the control objectives, a robust controller should be designed considering modeling error and model uncertainty. In this paper, a sliding mode controller is designed to improve the position control performance of pneumatic cylinder driving system. Experimental results show that the designed controller achieves the designed control objectives even if the model of the cylinder driving system, such as the initial pressure inside the cylinder and the initial position of the piston is changed.

공기압실린더 구동장치를 이용한 6자유도 시뮬레이터의 자세제어에 관한 연구 (Study on the Pose Control of a 6 DOF Simulator with Pneumatic Cylinder Driving Apparatus)

  • 정지현;지상원;장지성
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.59-65
    • /
    • 2007
  • In this study, 6-DOF simulator using pneumatic cylinder driving apparatus was manufactured because a pneumatic cylinder driving apparatus is superior to electric driving motor and hydraulic actuator, which used in traditional 6-DOF simulator, in competitive price and acceleration performance, and, 6-DOF motion can be realized at a low price in case that relatively low load is imposed on the simulator. The possible range of pose control of the simulator was investigated by inverse kinematics, and, it was controlled by a linear controller derived from linear model of the simulator. The Experimental results show that the simulator follows given coordinate well.

  • PDF

관로의 전달특성을 고려한 공기압 실린더 위치제어계의 모델링 (Modeling of a Pneumatic Cylinder Position Control System Considering Transfer Characteristics of a Transmission Line)

  • 강보식;송창섭;지상원;장지성
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.631-636
    • /
    • 2006
  • In this study, a model of pneumatic cylinder position control system considering dynamic characteristics of transmission line is proposed. The transfer characteristics of transmission line are assumed to be second order transfer function because the effect of resonance characteristics of transmission line under high frequency range can be neglected by the friction force and low pass characteristics of the pneumatic cylinder driving system. Therefore, the position control system including transmission line can be modeled by using a model of pneumatic cylinder driving system and the model of transmission line. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results.

공기압 구동장치의 에너지효율 평가 (Evaluation of Energy Transfer Efficiency of Pneumatic Driving Apparatus)

  • 장지성;지상원
    • 동력기계공학회지
    • /
    • 제15권6호
    • /
    • pp.95-100
    • /
    • 2011
  • In this study, an evaluation equation of energy efficiency of pneumatic driving apparatus is proposed. The evaluation equation is derived from state equation and energy equation of air in a control volume, and, the equation of motion of a moving part of a pneumatic cylinder. As a result, distribution of consumption energy and energy efficiency of pneumatic driving apparatus can be analyzed quantitatively. The effectiveness of the proposed method is proved by a pneumatic cylinder driving apparatus using a meter-out driving method.

탄성 및 점성 부하시 공기압 실린더 시스템의 디지털 위치 제어 (Digital Positioning Control of Pneumatic Cylinder System with Elastic and Viscous Load)

  • 박명관;문영진;편창관
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.137-144
    • /
    • 1998
  • For a model system consisted of four pneumatic cylinders with strokes of 10, 20, 40 and 80 mm, investigation was carried out experimentally and numerically about the reliability of system with elastic and viscous load. The elastic load affects the performance of each cylinder in cylinder series, and changes the time lag and the velocity of the piston which makes the positioning control rather difficult. Taking the effects of the elastic load into consideration, positioning can be carried out comparatively smoothly by only adjusting the driving timing. The effect of a viscous load reduces the vibration of each moving body in the cylinder series and also reduces the over-travelled distance which happens when several cylinders move at the same time. For reasons, a positioning with a viscous load can be relatively smoothly carried out even without the timing control.

  • PDF

소비에너지 절약을 위한 공기압 실린더 구동장치의 파라미터 선정방법 (A Study on the Selection Method of Parameters for Energy Saving in Pneumatic Cylinder Driving Apparatus)

  • 장지성
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.60-65
    • /
    • 2012
  • Pneumatic actuators are clean, lightweight, and can be easily serviced, whereas low energy efficiency has been considered as a critical shortcoming compared with corresponding hydraulic and electrical actuators. This study describes a new design method of pneumatic cylinder driving apparatus by lowering a supply pressure. The simulation study demonstrates that the designed system with the proposed method can operate at the smaller energy consumption state compare to the designed system with the conventional method for the specified working conditions.

릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성 (Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.