• 제목/요약/키워드: Pneumatic Cylinder

검색결과 174건 처리시간 0.023초

공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계 (Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus)

  • 장지성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

공기압 실린더를 이용한 힘과 위치 동시 궤적 추적 제어 (Position and Force Simultaneous Trajectory Tracking Control with a Pneumatic Cylinder Driving System)

  • 조민수;장지성
    • 동력기계공학회지
    • /
    • 제7권3호
    • /
    • pp.40-47
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control apparatus with pneumatic cylinder driving system is proposed. The pneumatic cylinder driving system that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic actuators. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control apparatus show that the interacting effects of two cylinders are eliminated remarkably and the proposed control apparatus tracks the given position and force trajectory accurately.

  • PDF

Development of sit-to-stand assistive chair using a pneumatic cylinder: a feasibility test

  • Hong, SoungKyun;Lee, GyuChang
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권3호
    • /
    • pp.197-200
    • /
    • 2020
  • Objective: The purpose of this study was to develop and investigate the feasibility of a sit-to-stand assistive chair using a pneumatic cylinder. Design: Cross-sectional study. Methods: The sit-to-stand assistive chair was developed to assist the sit-to-stand movement by rising up of the chair by a pneumatic cylinder. After the user is seated on the chair, if the pneumatic cylinder pulls the seat plate when standing up, the spring of the pneumatic cylinder, which has been stretched, assists in rising the rear end of the seat plate so that the user can stand conveniently and comfortably. A feasibility test was performed in 10 heathy adults. The electromyographic muscle activation of the trunk and lower extremity muscles was analyzed, which included the erector spinae, rectus abdominis, quadriceps, tibialis anterior, gastrocnemius when standing up from sitting using the developed chair and standing up without using the developed chair. Results: As a result, the sit-to-stand assistive chair using a pneumatic cylinder was developed. In the feasibility test, the use of the developed chair had a decrease in rectus abdominis, quadriceps, tibialis anterior activation compared to those who did not use the device in the healthy adults. Conclusions: The sit-to-stand assistive chair using a pneumatic cylinder may be helpful to reduce the activation of the rectus abdominis, quadriceps, tibialis anterior muscles when performing a sit-to-stand movement. Through the results, the efficacy of the sit-to-stand assistive chair can be confirmed. In the future, further studies are warranted to investigate for the safety and efficacy of its use in the elderly population or those who are disabled.

A Method of Accurate Position Control with a Pneumatic Cylinder Driving Apparatus

  • Jang Ji-Seong;Byun Jung-Hoan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.993-1001
    • /
    • 2006
  • In this paper, a method of accurate position control using a pneumatic cylinder driving apparatus is presented. To overcome the effect of friction force and transmission line, low friction type cylinder applied externally pressurized air bearing structure is used and two control valves attached both side of the cylinder directly. To compensate nonlinear characteristics of control valves, linearized control input derived from the relation between control input and effective area of control valve, and dither signal are applied to the valve. The controller applied to the pneumatic cylinder driving apparatus is composed of a state feedback controller and a disturbance observer. Experimental results show that the effectiveness of the proposed method and position control error of $5{\mu}m$ accuracy could be obtained easily.

리커런트 신경회로망을 이용한 공압 로드레스 실린더의 정밀위치제어 (The Precision Position Control of the Pneumatic Rodless Cylinder Using Recurrent Neural Networks)

  • 노철하;김영식;김상희
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.84-90
    • /
    • 2003
  • This paper develops a control method that is composed of the proportional control algorithm and the learning algorithm based on the recurrent neural networks (RNN) for the position control of a pneumatic rodless cylinder. The proportional control algorithm is suggested for the modeled pneumatic system, which is obtained easily simplifying the system, and the RNN is suggested for the compensation of the modeling errors and uncertainties of the pneumatic system. In the proportional control, two zones are suggested in the phase plane. One is the transient zone for the smooth tracking and the other is the small movement zone for the accurate position control with eliminating the stick-slip phenomenon. The RNN is connected in parallel with the proportional control for the compensation of modeling errors and frictions, compressibilities, and parameter uncertainties in the pneumatic control system. This paper experimentally verifies the feasibility of the proposed control algorithm for such pneumatic systems.

고속 공기압 실린더 내장용 쿠션기구의 특성 비교 (Characteristic Comparison on Internal Cushion Devices at High-speed Pneumatic Cylinders)

  • 김도태;장중걸
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.24-30
    • /
    • 2013
  • This paper studies the comparative analysis on two different internal cushion devices (the types of needle and relief valve) used to absorb the energy which is generated when the pneumatic cylinder moves with the load at meter-out speed control system. The effect at varying the piston velocity under same driving condition is mainly investigated. The simulation results on pressure in the cushion chamber and the dynamic behavior of the relief valve type cushion device are compared with the needle valve type. Design and performance are improved with the cushion configuration of better quality at high-speed pneumatic cylinder. Based on the relation between absorbed energy and impact energy at cushion process, cushion performance at pneumatic cylinder is evaluated.

공압식 대퇴의지의 유각기 동역학 시뮬레이션 (Swing Phase Dynamic Simulation of Pneumatic Prosthesis)

  • 조현석;류제청;문무성;김규석;김경훈;김신기;천미선
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 추계학술대회
    • /
    • pp.267-271
    • /
    • 1997
  • In this study, swing phase dynamic simulation of above-knee prosthesis is performed. The prosthesis consists of a single axis knee mechanism and pneumatic cylinder. The numerical modelling of the prosthesis is analyzed in two dimensions. The governing equation of thermodynamical pneumatic cylinder model is applied to construct the control of lower limb during swing phase. Knee flexion angle with respect to the orifice diameter of the pneumatic cylinder is produced. This analysis will be very useful to the design of pneumatic cylinder in prosthesis.

  • PDF

로드리스 실린더의 수명 특성에 관한 연구 (A Study on the Life Characteristic of Rodless Cylinder)

  • 이충성;임재학;강보식
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권1호
    • /
    • pp.21-27
    • /
    • 2015
  • Pneumatic cylinders are classified into rod-type pneumatic cylinders and rodless pneumatic cylinders depending on the presence of the rod. Rodless cylinders have a constant area and have no deflection. Rodless cylinders are widely used in automatic systems requiring high-speed performance and high-precision transportation. However, the research of the pneumatic cylinder has been focused on the structure and life characteristics. In this research, aging characteristics and shape parameter analysis which are related to the lifetime were investigated. By conducting the lifetime tests with two different materials for the transfer plate, the failure mode and lifetime characteristics were analyzed. By the Anderson-Darling (A-D) verification based on the complete data set, the analysis results of lifetime distribution, shape parameter, and scale parameter were provided.

탄성 및 점성 부하시 공기압 실린더 시스템의 디지털 위치 제어 (Digital Positioning Control of Pneumatic Cylinder System with Elastic and Viscous Load)

  • 박명관;문영진;편창관
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.137-144
    • /
    • 1998
  • For a model system consisted of four pneumatic cylinders with strokes of 10, 20, 40 and 80 mm, investigation was carried out experimentally and numerically about the reliability of system with elastic and viscous load. The elastic load affects the performance of each cylinder in cylinder series, and changes the time lag and the velocity of the piston which makes the positioning control rather difficult. Taking the effects of the elastic load into consideration, positioning can be carried out comparatively smoothly by only adjusting the driving timing. The effect of a viscous load reduces the vibration of each moving body in the cylinder series and also reduces the over-travelled distance which happens when several cylinders move at the same time. For reasons, a positioning with a viscous load can be relatively smoothly carried out even without the timing control.

  • PDF

MPWM을 이용한 공압 실린더의 지능제어 (Intelligent control of pneumatic actuator using MPWM)

  • 송인성;표성만;안경관;양순용;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF