• Title/Summary/Keyword: Ply

Search Result 717, Processing Time 0.024 seconds

On Fiber Orientation Characterization of CERP Laminate Layups Using Ultrasonic Azimuthal Scanners

  • Im Kwang-Hee;Hsu, David K.;Sim Jae-Gi;Yang, In-Young;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.566-576
    • /
    • 2003
  • Carbon-fiber reinforced plastics (CFRP) composite laminates often possess strong in-plane elastic anisotropy attributable to the fiber orientation and layup sequence. The layup orientation thus greatly influences its properties in a composite laminate. It could result in the part being rejected or discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and to require less time than the optical test. In this paper, ultrasonic scanners were set out for different measurement modalities for acquiring ultrasonic signals as a function of in-plane azimuthal angle. The motorized scanner was built first for making transmission measurements using a pair of normal-incidence shear wave transducers. Another scanner was then built fer the acousto-ultrasonic configuration using contact transducers. A ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. We have compared the test results with model data. It is found that strong agreement are shown between tests and the model developed in characterizing cured layups of the laminates.

Critical Buckling Temperatures of Anisotropic Laminated Composite Plates considering a Higher-order Shear Deformation (고차전단변형을 고려한 비등방성 적층복합판의 임계좌굴온도)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.201-209
    • /
    • 1998
  • The presence of elevated temperature can alter significantly the structural response of fibre-reinforced laminated composites. A thermal environment causes degradation in both strength and constitutive properties, particularly in the case of fibre-reinforced polymeric composites. Furthermore, associated thermal expansion, either alone or in combination with mechanically induced deformation, can result in buckling, large deflections, and excessively high stress levels. Consequently, it is often imperative to consider environmental effects in the analysis and design of laminated systems. Exact analytical solutions of higher-order shear deformation theory is developed to study the thermal buckling of cross-ply and antisymmetric angle-ply rectangular plates. The buckling behavior of moderately thick cross-ply and antisymmetric angle-ply laminates that are simply supported and subject to a uniform temperature rise is analyzed. Numerical results are presented for fiber-reinforced laminates and show the effects of ply orientation, number of layers, plate thickness, and aspects ratio on the critical buckling temperature and compared with those obtained using the classical and first-order shear deformation theory.

  • PDF

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Development of Ply-Lam Composed of Japanese Cypress Laminae and Korean Larch Plywood

  • FUJIMOTO, Yoshiyasu;TANAKA, Hiroshi;MORITA, Hideki;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.57-66
    • /
    • 2021
  • In recent years, the use of cross laminated timber (CLT) has been evolving. In addition, CLT manufactured with various species such as Japanese cedar has been developed to utilize the local resources in each country. However most factories in Japan produce CLT by bonding the laminae in width direction for orthogonal layers, where grain of element is perpendicular to the grain of outer layer, and this process is considered to be one of the factors that reduce productivity. A new wood based material (hereinafter referred to as Ply-lam) using wooden panel such as plywood for the orthogonal layer was developed in order to improve productivity in CLT manufacturing and improve quality. Japanese cypress lamina was used for the parallel layer, where grain of element is parallel to the grain of outer layer, of CLT and Korean larch plywood was used for the orthogonal layer, in order to effectively use Korean larch and expand the utilization of Japanese cypress. The cross-sectional construction of the Ply-lam was 5-layers 5-plies, and the dimensions were 1000 mm (width) × 150 mm (depth) × 4000 mm (length). As a performance evaluation of the manufactured Ply-lam, strength tests such as out-of-plane bending, in-plane bending, out-of-plane shearing and in-plane shearing tests were carried out. As the result of this study, Ply-lam composed of Japanese cypress lamina panels and Korean larch plywood showed very higher out-of-plane bending strength compared to the standard strength of CLT. And the result obtained in other tests seems to show a sufficiently high value.

Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads

  • Rajanna, T.;Banerjee, Sauvik;Desai, Yogesh M.;Prabhakara, D.L.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.37-55
    • /
    • 2016
  • In this study, the influence of centrally placed circular and square cutouts on vibration and buckling characteristics of different ply-oriented laminated panels under the action of compressive and/or tensile types of non-uniform in-plane edge loads are investigated. The panels are inspected under the action of uniaxial compression, uniaxial tension and biaxial, compression-tension, loading configurations. Furthermore, the effects of different degrees of edge restraints and panel aspect ratios are also addressed in this work. Towards this, a nine-node heterosis plate element has been adopted which includes the effect of shear deformation and rotary inertia. According to the results, the tensile buckling loads are higher than that of compressive buckling loads. However, the tensile buckling load continuously reduces with the increased cutout sizes irrespective of ply-orientations. This is also true for compressive buckling loads except for some particular ply-orientations with higher sized cutouts.

A Study on the Vibration Characteristics Analysis of Composite Materials by Using Electronic Speckle PatternInterferometry Method (전자처리 스페클 패턴 간섭법을 이용한 복합재료의 진동 특성 해석에 관한 연구)

  • 김형택;정현철;양승필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.388-392
    • /
    • 1995
  • The Electronic Speckle Pattern Interferometry(ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. Composite materials have various complicated characteristics depending on the ply materials,ply orientations,ply stacking sequences and boundary conditions. Therefore, it is difficult to analyze composite material. For efficient use of composit materials in engineering applications, the dynamic behavior such as, natural frequencies and modal patterns should be identified. This studying presents FEM results for the free vibration of symmetrically laminated composite as [30/-30/90] $_{s}$. The natural frequencies of laminated composite rectangular plates having the boundary condition(:2-edge clamped) are experimentally obtained. In order to demonstrate the validity of the experiment,FEM analysis using ANSYS was performed and natural frequencies experimentally obtained is compared with calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.t.

  • PDF

Characterization of tensile damage progress in stitched CFRP laminates

  • Yoshimura, Akinori;Yashiro, Shigeki;Okabe, Tomonaga;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.16 no.3
    • /
    • pp.223-244
    • /
    • 2007
  • This study experimentally and numerically investigated the tensile damage progress in stitched laminates. In particular, it focused on the effects of stitching on the damage progress. First, we experimentally confirmed that ply cracks and delamination appeared under load regardless of stitching. We then performed damage-extension simulation for stitched laminates using a layer-wise finite element model with stitch threads as beam elements, in which the damage (ply cracks and delamination) was represented by cohesive elements. A detailed comparison between observation and the simulated results confirmed that stitching had little effect on the onset and accumulation of ply cracks. Furthermore, we demonstrated that the stitch threads significantly suppressed the extension of the delamination.

Failure analysis of composite plates under static and dynamic loading

  • Ray, Chaitali;Majumder, Somnath
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • The present paper deals with the first ply failure analysis of the laminated composite plates under various static and dynamic loading conditions. Static analysis has been carried out under patch load and triangular load. The dynamic failure analysis has been carried out under triangular pulse load. The formulation has been carried out using the finite element method and a computer code has been developed. The first order shear deformation theory has been applied in the present formulation. The displacement time history analysis of laminated composite plate has been carried out and the results are compared with those published in literature to validate the formulation. The first ply failure load for laminated composite plates with various lamination schemes under static and dynamic loading conditions has been calculated using various failure criteria. The failure index-time history analysis has also been carried out and presented in this paper.

A Study on the Vibration Characteristics of Laminated Composite Materials Rectangular Plates (적층 복합재료 사각판의 진동특성에 관한 연구)

  • 허동현;신귀수;정인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.486-490
    • /
    • 1997
  • Composite materials have varios complicated characteristics to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. This study presents the experimental and FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtined is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

A comparative study for bending of cross-ply laminated plates resting on elastic foundations

  • Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • Two hyperbolic displacement models are used for the bending response of simply-supported orthotropic laminated composite plates resting on two-parameter elastic foundations under mechanical loading. The models contain hyperbolic expressions to account for the parabolic distributions of transverse shear stresses and to satisfy the zero shear-stress conditions at the top and bottom surfaces of the plates. The present theory takes into account not only the transverse shear strains, but also their parabolic variation across the plate thickness and requires no shear correction coefficients in computing the shear stresses. The governing equations are derived and their closed-form solutions are obtained. The accuracy of the models presented is demonstrated by comparing the results obtained with solutions of other theories models given in the literature. It is found that the theories proposed can predict the bending analysis of cross-ply laminated composite plates resting on elastic foundations rather accurately. The effects of Winkler and Pasternak foundation parameters, transverse shear deformations, plate aspect ratio, and side-to-thickness ratio on deflections and stresses are investigated.