• Title/Summary/Keyword: Pluripotent-related genes

Search Result 22, Processing Time 0.018 seconds

The Aurora Kinase Inhibitor CYC116 Promotes the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells

  • Sijia, Ji;Wanzhi, Tu;Chenwen, Huang;Ziyang, Chen;Xinyue, Ren;Bingqing, He;Xiaoyan, Ding;Yuelei, Chen;Xin, Xie
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.923-934
    • /
    • 2022
  • Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have great potential in applications such as regenerative medicine, cardiac disease modeling, and in vitro drug evaluation. However, hPSC-CMs are immature, which limits their applications. During development, the maturation of CMs is accompanied by a decline in their proliferative capacity. This phenomenon suggests that regulating the cell cycle may facilitate the maturation of hPSC-CMs. Aurora kinases are essential kinases that regulate the cell cycle, the role of which is not well studied in hPSC-CM maturation. Here, we demonstrate that CYC116, an inhibitor of Aurora kinases, significantly promotes the maturation of CMs derived from both human embryonic stem cells (H1 and H9) and iPSCs (induced PSCs) (UC013), resulting in increased expression of genes related to cardiomyocyte function, better organization of the sarcomere, increased sarcomere length, increased number of mitochondria, and enhanced physiological function of the cells. In addition, a number of other Aurora kinase inhibitors have also been found to promote the maturation of hPSC-CMs. Our data suggest that blocking aurora kinase activity and regulating cell cycle progression may promote the maturation of hPSC-CMs.

Up-regulation of Pluripotency-related Genes in Human Amniotic Fluid-derived Stem Cells by ESRRB Conjugated with Cell-Penetrating Peptide (인간 양수 유래 줄기세포에서 세포투과단백질을 이용한 ESRRB 단백질의 직접도입에 의한 전분화능 관련 유전자의 발현 조절)

  • Jo, Jung-Hyun;Lee, Yu-Sun;Oh, Mi-Hee;Ko, Jung-Jae;Cheon, Yong-Pil;Lee, Dong-Ryul
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.243-251
    • /
    • 2010
  • ESRRB (Estrogen related receptor $\beta$) is an orphan receptor, and have a role on maintaining the undifferentiated state and self-renewal of pluripotent stem cell as a transcription factor which regulates the expression of OCT4 and NANOG genes. Also, Feng et al. (2009) reported that Esrrb, Oct4 and Sox2 could induce pluripotent stem cell from somatic cells. The aim of the present study was to develop the direct delivery system of human ESRRB protein into human amniotic fluid-derived stem cells (AFSCs) and to analyze the effect of ESRRB on the regulation of pluripotency-related genes. Human ESRRB has three isoforms arisen by alternative splicing. We cloned short-form ESRRB and made a fusion protein of ESRRB and R7 for an efficient protein transfer to cell. R7 as cell-penetrating peptide(CPP) can help to transfer ESRRB into cells. R7-ESRRB-His6 protein was observed in the cytoplasm and nuclei within 5 hours after treatment. Also, we could observe R7-ESRRB-His6 protein only in the nuclei within 24 hours. Realtime PCR showed that ESRRB increased expression of OCT4 and NANOG as well as SOX2 gene. Therefore, we demonstrated that R7-ESRRB-His6 proteins were efficiently transferred into the nuclei of AFSCs and work well as a possible transcription factor.

Acceleration of Mesenchymal-to-Epithelial Transition (MET) during Direct Reprogramming Using Natural Compounds

  • Seo, Ji-Hye;Jang, Si Won;Jeon, Young-Joo;Eun, So Young;Hong, Yean Ju;Do, Jeong Tae;Chae, Jung-il;Choi, Hyun Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1245-1252
    • /
    • 2022
  • Induced pluripotent stem cells (iPSCs) can be generated from somatic cells using Oct4, Sox2, Klf4, and c-Myc (OSKM). Small molecules can enhance reprogramming. Licochalcone D (LCD), a flavonoid compound present mainly in the roots of Glycyrrhiza inflata, acts on known signaling pathways involved in transcriptional activity and signal transduction, including the PGC1-α and MAPK families. In this study, we demonstrated that LCD improved reprogramming efficiency. LCD-treated iPSCs (LCD-iPSCs) expressed pluripotency-related genes Oct4, Sox2, Nanog, and Prdm14. Moreover, LCD-iPSCs differentiated into all three germ layers in vitro and formed chimeras. The mesenchymal-to-epithelial transition (MET) is critical for somatic cell reprogramming. We found that the expression levels of mesenchymal genes (Snail2 and Twist) decreased and those of epithelial genes (DSP, Cldn3, Crb3, and Ocln) dramatically increased in OR-MEF (OG2+/+/ROSA26+/+) cells treated with LCD for 3 days, indicating that MET effectively occurred in LCD-treated OR-MEF cells. Thus, LCD enhanced the generation of iPSCs from somatic cells by promoting MET at the early stages of reprogramming.

Generation of Isthmic Organizer-Like Cells from Human Embryonic Stem Cells

  • Lee, Junwon;Choi, Sang-Hwi;Lee, Dongjin R;Kim, Dae-Sung;Kim, Dong-Wook
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.110-118
    • /
    • 2018
  • The objective of this study was to induce the production of isthmic organizer (IsO)-like cells capable of secreting fibroblast growth factor (FGF) 8 and WNT1 from human embryonic stem cells (ESCs). The precise modulation of canonical Wnt signaling was achieved in the presence of the small molecule CHIR99021 ($0.6{\mu}M$) during the neural induction of human ESCs, resulting in the differentiation of these cells into IsO-like cells having a midbrain-hindbrain border (MHB) fate in a manner that recapitulated their developmental course in vivo. Resultant cells showed upregulated expression levels of FGF8 and WNT1. The addition of exogenous FGF8 further increased WNT1 expression by 2.6 fold. Gene ontology following microarray analysis confirmed that IsO-like cells enriched the expression of MHB-related genes by 40 fold compared to control cells. Lysates and conditioned media of IsO-like cells contained functional FGF8 and WNT1 proteins that could induce MHB-related genes in differentiating ESCs. The method for generating functional IsO-like cells described in this study could be used to study human central nervous system development and congenital malformations of the midbrain and hindbrain.

Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

  • Shin, Jihoon;Youn, Hong-Duk
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.527-528
    • /
    • 2016
  • In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs.

Conjugation of vascular endothelial growth factor to poly lactic-co-glycolic acid nanospheres enhances differentiation of embryonic stem cells to lymphatic endothelial cells

  • Yoo, Hyunjin;Choi, Dongyoon;Choi, Youngsok
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.533-538
    • /
    • 2021
  • Objective: Pluripotent stem cell-derived lymphatic endothelial cells (LECs) show great promise in their therapeutic application in the field of regenerative medicine related to lymphatic vessels. We tested the approach of forced differentiation of mouse embryonal stem cells into LECs using biodegradable poly lactic-co-glycolic acid (PLGA) nanospheres in conjugation with growth factors (vascular endothelial growth factors [VEGF-A and VEGF-C]). Methods: We evaluated the practical use of heparin-conjugated PLGA nanoparticles (molecular weight ~15,000) in conjugation with VEGF-A/C, embryoid body (EB) formation, and LEC differentiation using immunofluorescence staining followed by quantification and quantitative real-time polymerase chain reaction analysis. Results: We showed that formation and differentiation of EB with VEGF-A/C-conjugated PLGA nanospheres, compared to direct supplementation of VEGF-A/C to the EB differentiation media, greatly improved yield of LYVE1(+) LECs. Our analyses revealed that the enhanced potential of LEC differentiation using VEGF-A/C-conjugated PLGA nanospheres was mediated by elevation of expression of the genes that are important for lymphatic vessel formation. Conclusion: Together, we not only established an improved protocol for LEC differentiation using PLGA nanospheres but also provided a platform technology for the mechanistic study of LEC development in mammals.

Lysophosphatidic acid improves development of porcine somatic cell nuclear transfer embryos

  • Ling Sun;Tao Lin;Jae Eun Lee;So Yeon Kim;Ying Bai;Dong Il Jin
    • Journal of Animal Science and Technology
    • /
    • v.66 no.4
    • /
    • pp.726-739
    • /
    • 2024
  • This study was conducted to investigate whether lysophosphatidic acid (LPA) could improve the development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT-derived embryos were cultured in chemically defined polyvinyl alcohol (PVA)-based porcine zygote medium (PZM)-4 without or with LPA, and the development, cell proliferation potential, apoptosis, and expression levels of pluripotent markers were evaluated. LPA significantly increased the rates of cleavage and blastocyst formation compared to those seen in the LPA un-treatment (control) group. The expression levels of embryonic development-related genes (IGF2R, PCNA and CDH1) were higher (p < 0.05) in the LPA treatment group than in the control group. LPA significantly increased the numbers of total, inner cell mass and EdU (5-ethynyl-2'-deoxyuridine)-positive cells in porcine SCNT blastocysts compared to those seen in the control group. TUNEL assay showed that LPA significantly reduced the apoptosis rate in porcine SCNT-derived embryos; this was confirmed by decreases (p < 0.05) in the expression levels of pro-apoptotic genes, BAX and CASP3, and an increase (p < 0.05) in the expression level of the anti-apoptotic gene, BCL2L1. In addition, LPA significantly increased Oct4 expression at the gene and protein levels. Together, our data suggest that LPA improves the quality and development of porcine SCNT-derived embryos by reducing apoptosis and enhancing cell proliferation and pluripotency.

Alterations and Co-Occurrence of C-MYC, N-MYC, and L-MYC Expression are Related to Clinical Outcomes in Various Cancers

  • Moonjung Lee;Jaekwon Seok;Subbroto Kumar Saha;Sungha Cho;Yeojin Jeong;Minchan Gil;Aram Kim;Ha Youn Shin;Hojae Bae;Jeong Tae Do;Young Bong Kim;Ssang-Goo Cho
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.215-233
    • /
    • 2023
  • Background and Objectives: MYC, also known as an oncogenic reprogramming factor, is a multifunctional transcription factor that maintains induced pluripotent stem cells (iPSCs). Although MYC is frequently upregulated in various cancers and is correlated with a poor prognosis, MYC is downregulated and correlated with a good prognosis in lung adenocarcinoma. MYC and two other MYC family genes, MYCN and MYCL, have similar structures and could contribute to tumorigenic conversion both in vitro and in vivo. Methods and Results: We systematically investigated whether MYC family genes act as prognostic factors in various human cancers. We first evaluated alterations in the expression of MYC family genes in various cancers using the Oncomine and The Cancer Genome Atlas (TCGA) database and their mutation and copy number alterations using the TCGA database with cBioPortal. Then, we investigated the association between the expression of MYC family genes and the prognosis of cancer patients using various prognosis databases. Multivariate analysis also confirmed that co-expression of MYC/MYCL/MYCN was significantly associated with the prognosis of lung, gastric, liver, and breast cancers. Conclusions: Taken together, our results demonstrate that the MYC family can function not only as an oncogene but also as a tumor suppressor gene in various cancers, which could be used to develop a novel approach to cancer treatment.

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

NANOG expression in parthenogenetic porcine blastocysts is required for intact lineage specification and pluripotency

  • Mingyun Lee;Jong-Nam Oh;Gyung Cheol Choe;Kwang-Hwan Choi;Dong-Kyung Lee;Seung-Hun Kim;Jinsol Jeong;Yelim Ahn;Chang-Kyu Lee
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1905-1917
    • /
    • 2023
  • Objective: Nanog homeobox (NANOG) is a core transcription factor that contributes to pluripotency along with octamer binding transcription factor-4 (OCT4) and sex determining region-Y box-2 (SOX2). It is an epiblast lineage marker in mammalian pre-implantation embryos and exhibits a species-specific expression pattern. Therefore, it is important to understand the lineage of NANOG, the trophectoderm, and the primitive endoderm in the pig embryo. Methods: A loss- and gain-of-function analysis was done to determine the role of NANOG in lineage specification in parthenogenetic porcine blastocysts. We analyzed the relationship between NANOG and pluripotent core transcription factors and other lineage makers. Results: In NANOG-null late blastocysts, OCT4-, SOX2-, and SOX17-positive cells were decreased, whereas GATA binding protein 6 (GATA6)-positive cells were increased. Quantitative real-time polymerase chain reaction revealed that the expression of SOX2 was decreased in NANOG-null blastocysts, whereas that of primitive endoderm makers, except SOX17, was increased. In NANOG-overexpressing blastocysts, caudal type homeobox 2 (CDX2-), SOX17-, and GATA6-positive cells were decreased. The results indicated that the expression of primitive endoderm markers and trophectoderm-related genes was decreased. Conclusion: Taken together, the results demonstrate that NANOG is involved in the epiblast and primitive endoderm differentiation and is essential for maintaining pluripotency within the epiblast.