• Title/Summary/Keyword: Pluripotent stem cells

Search Result 157, Processing Time 0.025 seconds

Change of X Chromosome Status during Development and Reprogramming

  • Jung, Yong-Wook;Park, In-Hyun
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.187-195
    • /
    • 2011
  • X chromosome inactivation (XCI) is a process that enables mammalian females to ensure the dosage compensation for X-linked genes. Investigating the mechanism of XCI might provide deeper understandings of chromosomal silencing, epigenetic regulation of gene expressions, and even the course of evolution. Studies on mammalian XCI conducted with mice have revealed many fundamental findings on XCI. However, difference of murine and human XCI necessitates the further investigation in human XCI. Recent success in reprogramming of differentiated cells into pluripotent stem cells showed the reversibility of XCI in vitro, X chromosome reactivation (XCR), which provides another tool to study the change in X chromosome status. This review summarizes the current knowledge of XCI during early embryonic development and describes recent achievements in studies of XCI in reprogramming process.

Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

  • Shin, Jihoon;Youn, Hong-Duk
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.527-528
    • /
    • 2016
  • In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs.

Efficient Production of Parthenogenetic Murine Embryonic Stem Cells by the Treatment of Pluripotin (SC-1) (Pluripotin(SC-1) 처리를 통한 단위발생 마우스 배아줄기세포 생산 효율 향상)

  • Kang, Hoin;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.171-174
    • /
    • 2012
  • Various small molecules can be used to control major signaling pathways to enhance stemness and inhibit differentiation in murine embryonic stem cell (mESC) culture. Small molecules inhibiting the fibroblast growth factor (FGF)/ERK pathway can preserve pluripotent cells from stimulation of differentiation. In this study, we aimed to evaluate the effect of pluripotin (SC-1), an inhibitor of the FGF/ERK pathway, on the colony formation of outgrowing presumptive mESCs. After plating the zona pellucida-free blastocyst on the feeder layer, attached cell clumps was cultured with SC-1 until the endpoint of the experiment at passage 10. In this experiment, when the number of colonies was counted at passage 3, SC-1-treated group showed 3.4 fold more mESC colonies when compared with control group. However, after passage 4, there was no stimulating effect of SC-1 on the colony formation. In conclusion, SC-1 treatment can be used to promote mESC generation by increasing the number of early mESC colonies.

Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts

  • Lee, Sang-Goo;Park, Jin-Kyu;Choi, Kwang-Hwan;Son, Hye-Young;Lee, Chang-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.11
    • /
    • pp.1565-1572
    • /
    • 2015
  • Porcine embryonic stem cells (pESCs) have become an advantageous experimental tool for developing therapeutic applications and producing transgenic animals. However, despite numerous reports of putative pESC lines, deriving validated pESC lines from embryos produced in vitro remains difficult. Here, we report that embryo aggregation was useful for deriving pESCs from in vitro-produced embryos. Blastocysts derived from embryo aggregation formed a larger number of colonies and maintained cell culture stability. Our derived cell lines demonstrated expression of pluripotent markers (alkaline phosphatase, Oct4, Sox2, and Nanog), an ability to form embryoid bodies, and the capacity to differentiate into the three germ layers. A cytogenetic analysis of these cells revealed that all lines derived from aggregated blastocysts had normal female and male karyotypes. These results demonstrate that embryo aggregation could be a useful technique to improve the efficiency of deriving ESCs from in vitro-fertilized pig embryos, studying early development, and deriving pluripotent ESCs in vitro in other mammals.

RUNX1 Upregulation Causes Mitochondrial Dysfunction via Regulating the PI3K-Akt Pathway in iPSC from Patients with Down Syndrome

  • Yanna Liu;Yuehua Zhang;Zhaorui Ren;Fanyi Zeng;Jingbin Yan
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.219-230
    • /
    • 2023
  • Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content, and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.

Propagation of Human Embryonic Stem Cells on Human Amniotic Fluid Cells as Feeder Cells in Xeno-Free Culture Conditions

  • Jung, Juwon;Baek, Jin Ah;Seol, Hye Won;Choi, Young Min
    • Development and Reproduction
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 2016
  • Human embryonic stem cells (hESCs) have been routinely cultured on mouse embryonic fibroblast feeder layers with a medium containing animal materials. For clinical application of hESCs, animal-derived products from the animal feeder cells, animal substrates such as gelatin or Matrigel and animal serum are strictly to be eliminated in the culture system. In this study, we performed that SNUhES32 and H1 were cultured on human amniotic fluid cells (hAFCs) with KO-SR XenoFree and a humanized substrate. All of hESCs were relatively well propagated on hAFCs feeders with xeno-free conditions and they expressed pluripotent stem cell markers, alkaline phosphatase, SSEA-4, TRA1-60, TRA1-81, Oct-4, and Nanog like hESCs cultured on STO or human foreskin fibroblast feeders. In addition, we observed the expression of nonhuman N-glycolylneuraminic acid (Neu5GC) molecules by flow cytometry, which was xenotransplantation components of contamination in hESCs cultured on animal feeder conditions, was not detected in this xeno-free condition. In conclusion, SNUhES32 and H1 could be maintained on hAFCs for humanized culture conditions, therefore, we suggested that new xeno-free conditions for clinical grade hESCs culture will be useful data in future clinical studies.

Insights into the signal transduction pathways of mouse lung type II cells revealed by transcription factor profiling in the transcriptome

  • Ramana, Chilakamarti V.
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.8.1-8.10
    • /
    • 2019
  • Alveolar type II cells constitute a small fraction of the total lung cell mass. However, they play an important role in many cellular processes including trans-differentiation into type I cells as well as repair of lung injury in response to toxic chemicals and respiratory pathogens. Transcription factors are the regulatory proteins dynamically modulating DNA structure and gene expression. Transcription factor profiling in microarray datasets revealed that several members of AP1, ATF, $NF-{\kappa}B$, and C/EBP families involved in diverse responses were expressed in mouse lung type II cells. A transcriptional factor signature consisting of Cebpa, Srebf1, Stat3, Klf5, and Elf3 was identified in lung type II cells, Sox9+ pluripotent lung stem cells as well as in mouse lung development. Identification of the transcription factor profile in mouse lung type II cells will serve as a useful resource and facilitate the integrated analysis of signal transduction pathways and specific gene targets in a variety of physiological conditions.

A novel and safe small molecule enhances hair follicle regeneration by facilitating metabolic reprogramming

  • Son, Myung Jin;Jeong, Jae Kap;Kwon, Youjeong;Ryu, Jae-Sung;Mun, Seon Ju;Kim, Hye Jin;Kim, Sung-wuk;Yoo, Sanghee;Kook, Jiae;Lee, Hongbum;Kim, Janghwan;Chung, Kyung-Sook
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.5.1-5.15
    • /
    • 2018
  • Targeting hair follicle regeneration has been investigated for the treatment of hair loss, and fundamental studies investigating stem cells and their niche have been described. However, knowledge of stem cell metabolism and the specific regulation of bioenergetics during the hair regeneration process is currently insufficient. Here, we report the hair regrowth-promoting effect of a newly synthesized novel small molecule, IM176OUT05 (IM), which activates stem cell metabolism. IM facilitated stemness induction and maintenance during an induced pluripotent stem cell generation process. IM treatment mildly inhibited mitochondrial oxidative phosphorylation and concurrently increased glycolysis, which accelerated stemness induction during the early phase of reprogramming. More importantly, the topical application of IM accelerated hair follicle regeneration by stimulating the progression of the hair follicle cycle to the anagen phase and increased the hair follicle number in mice. Furthermore, the stem cell population with a glycolytic metabotype appeared slightly earlier in the IM-treated mice. Stem cell and niche signaling involved in the hair regeneration process was also activated by the IM treatment during the early phase of hair follicle regeneration. Overall, these results show that the novel small molecule IM promotes tissue regeneration, specifically in hair regrowth, by restructuring the metabolic configuration of stem cells.

Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy

  • Jianxun Song
    • IMMUNE NETWORK
    • /
    • v.16 no.5
    • /
    • pp.281-285
    • /
    • 2016
  • CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet b cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.

Identification of Putative Embryonic Stem Cells Derived from Embryonic Blastodermal Cells of Fertilized Hen′s Eggs (닭 배반엽세포로부터 유래된 잠정적 배아주세포의 동정)

  • Lee, K.S.;Lee, H.;Kim, K.D.;Park, Seong-Su;Lee, S.H.
    • Korean Journal of Poultry Science
    • /
    • v.27 no.1
    • /
    • pp.73-78
    • /
    • 2000
  • Embryonic stem (ES) cells are pluripotent cell lines, which derived from preimplantation embryo. These cells have been used as a vehicle of foreign DNA for production of transgenic mammals. this experiment was performed to examined the possible use of blastodermal cells derived from hen's egg for germline manipulation. Stage X blsdtodermal cells isolated from fertilized eggs were cultured in DMEM containing 15% fetal calf serum. Blastodermal cells wre co-cultured on the chicken embryonic fibroblast (CEF) or mouse embryonic fibroblast(MEF) cells. to examine the effects of growth factors on stem cell growth, bFGF and LIF were added. There was no significant difference in colony formation of putative ES cells between CEF and MEF as a feederlayer, but the addition of growth factors enhanced the proliferation and inhibited differentiation of blastodermal cells. To characterize the cell colonies as a putative ES cells, putative embryonic cell colonies were stained by periodic acid Schiffs (PAS) reagent. The putative ES cell colonies showed intensive positive reaction similar to the property of undifferentiated PGC upto 20days in vitro, but not in other cell types. this result demonstrates that PAS-positive cell colonies may be used for the study of establishment of chicken ES cell lines for the production of transgenic chicken.

  • PDF