• 제목/요약/키워드: Pluripotent stem cell

검색결과 162건 처리시간 0.019초

Neural Transcription Factors: from Embryos to Neural Stem Cells

  • Lee, Hyun-Kyung;Lee, Hyun-Shik;Moody, Sally A.
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.705-712
    • /
    • 2014
  • The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.

Stem cell therapy in pain medicine

  • Han, Yong Hee;Kim, Kyung Hoon;Abdi, Salahadin;Kim, Tae Kyun
    • The Korean Journal of Pain
    • /
    • 제32권4호
    • /
    • pp.245-255
    • /
    • 2019
  • Stem cells are attracting attention as a key element in future medicine, satisfying the desire to live a healthier life with the possibility that they can regenerate tissue damaged or degenerated by disease or aging. Stem cells are defined as undifferentiated cells that have the ability to replicate and differentiate themselves into various tissues cells. Stem cells, commonly encountered in clinical or preclinical stages, are largely classified into embryonic, adult, and induced pluripotent stem cells. Recently, stem cell transplantation has been frequently applied to the treatment of pain as an alternative or promising approach for the treatment of severe osteoarthritis, neuropathic pain, and intractable musculoskeletal pain which do not respond to conventional medicine. The main idea of applying stem cells to neuropathic pain is based on the ability of stem cells to release neurotrophic factors, along with providing a cellular source for replacing the injured neural cells, making them ideal candidates for modulating and possibly reversing intractable neuropathic pain. Even though various differentiation capacities of stem cells are reported, there is not enough knowledge and technique to control the differentiation into desired tissues in vivo. Even though the use of stem cells is still in the very early stages of clinical use and raises complicated ethical problems, the future of stem cells therapies is very bright with the help of accumulating evidence and technology.

In Vivo Stem Cell Imaging Principles and Applications

  • Seongje Hong;Dong-Sung Lee;Geun-Woo Bae;Juhyeong Jeon;Hak Kyun Kim;Siyeon Rhee;Kyung Oh Jung
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.363-375
    • /
    • 2023
  • Stem cells are the foundational cells for every organ and tissue in our body. Cell-based therapeutics using stem cells in regenerative medicine have received attracting attention as a possible treatment for various diseases caused by congenital defects. Stem cells such as induced pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and neuroprogenitors stem cells (NSCs) have recently been studied in various ways as a cell-based therapeutic agent. When various stem cells are transplanted into a living body, they can differentiate and perform complex functions. For stem cell transplantation, it is essential to determine the suitability of the stem cell-based treatment by evaluating the origin of stem, the route of administration, in vivo bio-distribution, transplanted cell survival, function, and mobility. Currently, these various stem cells are being imaged in vivo through various molecular imaging methods. Various imaging modalities such as optical imaging, magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography (PET), and single-photon emission computed tomography (SPECT) have been introduced for the application of various stem cell imaging. In this review, we discuss the principles and recent advances of in vivo molecular imaging for application of stem cell research.

Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors

  • Shuang Yan;Yifei Zhang;Siqi Zhang;Shicheng Wei
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.394-405
    • /
    • 2023
  • The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.

Vitamin C promotes the early reprogramming of fetal canine fibroblasts into induced pluripotent stem cells

  • Sang Eun Kim;Jun Sung Lee;Keon Bong Oh;Jeong Ho Hwang
    • 한국동물생명공학회지
    • /
    • 제38권4호
    • /
    • pp.199-208
    • /
    • 2023
  • Background: Canine induced pluripotent stem cells (iPSCs) are an attractive source for veterinary regenerative medicine, disease modeling, and drug development. Here we used vitamin C (Vc) to improve the reprogramming efficiency of canine iPSCs, and its functions in the reprogramming process were elucidated. Methods: Retroviral transduction of Oct4, Sox2, Klf4, c-Myc (OSKM), and GFP was employed to induce reprogramming in canine fetal fibroblasts. Following transduction, the culture medium was subsequently replaced with ESC medium containing Vc to determine the effect on reprogramming activity. Results: The number of AP-positive iPSC colonies dramatically increased in culture conditions supplemented with Vc. Vc enhanced the efficacy of retrovirus transduction, which appears to be correlated with enhanced cell proliferation capacity. To confirm the characteristics of the Vc-treated iPSCs, the cells were cultured to passage 5, and pluripotency markers including Oct4, Sox2, Nanog, and Tra-1-60 were observed by immunocytochemistry. The expression of endogenous pluripotent genes (Oct4, Nanog, Rex1, and telomerase) were also verified by PCR. The complete silencing of exogenously transduced human OSKM factors was observed exclusively in canine iPSCs treated with Vc. Canine iPSCs treated with Vc are capable of forming embryoid bodies in vitro and have spontaneously differentiated into three germ layers. Conclusions: Our findings emphasize a straightforward method for enhancing the efficiency of canine iPSC generation and provide insight into the Vc effect on the reprogramming process.

Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases

  • Jeon, Sohee;Oh, Il-Hoan
    • BMB Reports
    • /
    • 제48권4호
    • /
    • pp.193-199
    • /
    • 2015
  • Degenerative retinal diseases affect millions of people worldwide, which can lead to the loss of vision. However, therapeutic approaches that can reverse this process are limited. Recent efforts have allowed the possibility of the stem cell-based regeneration of retinal cells and repair of injured retinal tissues. Although the direct differentiation of pluripotent stem cells into terminally differentiated photoreceptor cells comprises one approach, a series of studies revealed the intrinsic regenerative potential of the retina using endogenous retinal stem cells. Muller glial cells, ciliary pigment epithelial cells, and retinal pigment epithelial cells are candidates for such retinal stem cells that can differentiate into multiple types of retinal cells and be integrated into injured or developing retina. In this review, we explore our current understanding of the cellular identity of these candidate retinal stem cells and their therapeutic potential for cell therapy against degenerative retinal diseases. [BMB Reports 2015; 48(4): 193-199]

Recent advances in stem cell therapeutics and tissue engineering strategies

  • Kwon, Seong Gyu;Kwon, Yang Woo;Lee, Tae Wook;Park, Gyu Tae;Kim, Jae Ho
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.311-318
    • /
    • 2018
  • Background: Tissue regeneration includes delivering specific types of cells or cell products to injured tissues or organs for restoration of tissue and organ function. Stem cell therapy has drawn considerable attention since transplantation of stem cells can overcome the limitations of autologous transplantation of patient's tissues; however, it is not perfect for treating diseases. To overcome the hurdles associated with stem cell therapy, tissue engineering techniques have been developed. Development of stem cell technology in combination with tissue engineering has opened new ways of producing engineered tissue substitutes. Several studies have shown that this combination of tissue engineering and stem cell technologies enhances cell viability, differentiation, and therapeutic efficacy of transplanted stem cells. Main body: Stem cells that can be used for tissue regeneration include mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. Transplantation of stem cells alone into injured tissues exhibited low therapeutic efficacy due to poor viability and diminished regenerative activity of transplanted cells. In this review, we will discuss the progress of biomedical engineering, including scaffolds, biomaterials, and tissue engineering techniques to overcome the low therapeutic efficacy of stem cells and to treat human diseases. Conclusion: The combination of stem cell and tissue engineering techniques overcomes the limitations of stem cells in therapy of human diseases, and presents a new path toward regeneration of injured tissues.

Dysfunctional pancreatic cells differentiated from induced pluripotent stem cells with mitochondrial DNA mutations

  • So, Seongjun;Lee, Song;Lee, Yeonmi;Han, Jongsuk;Kang, Soonsuk;Choi, Jiwan;Kim, Bitnara;Kim, Deokhoon;Yoo, Hyun-Ju;Shim, In-Kyong;Oh, Ju-Yun;Lee, Yu-Na;Kim, Song-Cheol;Kang, Eunju
    • BMB Reports
    • /
    • 제55권9호
    • /
    • pp.453-458
    • /
    • 2022
  • Diabetes mellitus (DM) is a serious disease in which blood sugar levels rise abnormally because of failed insulin production or decreased insulin sensitivity. Although many studies are being conducted for the treatment or early diagnosis of DM, it is not fully understood how mitochondrial genome (mtDNA) abnormalities appear in patients with DM. Here, we induced iPSCs from fibroblasts, PBMCs, or pancreatic cells of three patients with type 2 DM (T2D) and three patients with non-diabetes counterpart. The mtDNA mutations were detected randomly without any tendency among tissues or patients. In T2D patients, 62% (21/34) of iPSC clones harbored multiple mtDNA mutations, of which 37% were homoplasmy at the 100% mutation level compared to only 8% in non-diabetes. We next selected iPSC clones that were a wild type or carried mutations and differentiated into pancreatic cells. Oxygen consumption rates were significantly lower in cells carrying mutant mtDNA. Additionally, the mutant cells exhibited decreased production of insulin and reduced secretion of insulin in response to glucose. Overall, the results suggest that screening mtDNA mutations in iPSCs from patients with T2D is an essential step before pancreatic cell differentiation for disease modeling or autologous cell therapy.

돼지 유도만능줄기세포 유래 복제란의 특성 분석 (Developmental Characteristics of Cloned Embryos Reconstructed with Induced Pluripotent Stem Cells in Pigs)

  • 권대진;오재돈;박미령;황인설;박응우;황성수
    • 한국동물생명공학회지
    • /
    • 제34권3호
    • /
    • pp.232-239
    • /
    • 2019
  • In general, cloned pigs have been produced using the somatic cell nuclear transfer (SCNT) technique with various types of somatic cells; however, the SCNT technique has disadvantages not only in its low efficiency but also in the development of abnormal clones. This study aimed to compare early embryonic development and quality of SCNT embryos with those of induced pluripotent stem cells (iPSCs) NT embryos (iPSC-NTs). Ear fibroblast cells were used as donor cells and iPSCs were generated from these cells by lentiviral transduction with human six factors (Oct4, Sox2, c-Myc, Nanog, Klf4 and Lin28). Blastocyst formation rate in iPSC-NT (23/258, 8.9%) was significantly lower than that in SCNT (46/175, 26.3%; p < 0.05). Total cell number in blastocysts was similar between two groups, but blastocysts in iPSC-NT had a lower number of apoptotic cells than in SCNT (2.0 ± 0.6 vs. 9.8 ± 2.9, p < 0.05). Quantitative PCR data showed that apoptosis-related genes (bax, caspase-3, and caspase-9) were highly expressed in SCNT than iPSC-NT (p < 0.05). Although an early development rate was low in iPSC-NT, the quality of cloned embryos from porcine iPSC was higher than that of embryos from somatic cells. Therefore, porcine iPSCs could be used as a preferable cell source to create a clone or transgenic animals by using the NT technique.

MEA 기반 신경제약 스크리닝 기술 개발 동향 (Trends in MEA-based Neuropharmacological Drug Screening)

  • 김용희;정상돈
    • 전자통신동향분석
    • /
    • 제38권1호
    • /
    • pp.46-54
    • /
    • 2023
  • The announcement of the US Environmental Protection Agency that it will stop conducting or funding experimental studies on mammals by 2035 should prioritize ongoing efforts to develop and use alternative toxicity screening methods to animal testing. Toxicity screening is likely to be further developed considering the combination of human-induced pluripotent-stem-cell-derived organ-on-a-chip and multielectrode array (MEA) technologies. We briefly review the current status of MEA technology and MEA-based neuropharmacological drug screening using various cellular model systems. Highlighting the coronavirus disease pandemic, we shortly comment on the importance of early prediction of toxicity by applying artificial intelligence to the development of rapid screening methods.