• Title/Summary/Keyword: Pluripotent stem cell

Search Result 162, Processing Time 0.02 seconds

Artificial gametes from stem cells

  • Moreno, Inmaculada;Miguez-Forjan, Jose Manuel;Simon, Carlos
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.2
    • /
    • pp.33-44
    • /
    • 2015
  • The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.

X-Chromosome Inactivation: A Complex Circuits regulated by Non-coding RNAs and Pluripotent Factors

  • Hwang, Jae Yeon;Lee, Chang-Kyu
    • Reproductive and Developmental Biology
    • /
    • v.41 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • X-chromosome inactivation is one of the most complex events observed in early embryo developments. The epigenetic changes occurred in female X-chromosome is essential to compensate dosages of X-linked genes between males and females. Because of the relevance of the epigenetic process to the normal embryo developments and stem cell studies, X-chromosome inactivation has been focused intensively for last 10 years. Initiation and regulation of the process is managed by diverse factors. Especially, proteins and non-coding RNAs encoded in X-chromosome inactivation center, and a couple of transcription factors have been reported to regulate the event. In this review, we introduce the reported factors, and how they regulate epigenetic inactivation of X-chromosomes.

Improvement of Cell Viability Using a Rho-associated Protein Kinase (ROCK) Inhibitor in Human Dental Papilla derived Single-induced Pluripotent Stem Cells (ROCK 억제제를 통한 사람 치유두 조직 유래 단일 사람 유도만능줄기세포의 생존성 향상)

  • Shim, Yoo-Jin;Kang, Young-Hoon;Kim, Hyeon-Ji;Kim, Mi-Jeong;Lee, Hyeon-Jeong;Son, Young-Bum;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2019
  • The aim of the present study was to improve the cell viability of human dental papilla derived single-induced pluripotent stem cells (iPSCs) using a Rho-associated protein kinase (ROCK) inhibitor, Y-27632. The iPSCs were produced using an episomal plasmid-based reprogramming method. After cell separation using trypsin, the iPSCs were treated with 0, 0.5, 1, 2.5, 5, 7.5, or $10{\mu}M$ Y-27632 for 5 d. Cell viability increased significantly following the $5{\mu}M$ Y-27632 treatment (p<0.05). When the iPSCs were exposed to medium containing $10{\mu}M$ Y-27632 for 0, 1, 2, 3, 4, and 5 d, the cell viability rate increased significantly in accordance with the cell viability rate (p<0.05). To evaluate the effect of the Y-27632 treatment on stemness characteristics, the expression of stem cell-specific transcripts and telomerase activity were investigated in the iPSCs treated with $10{\mu}M$ Y-27632 for 5 d. The expression levels of stem cell-specific transcripts, such as OCT-4, NONOG, and SOX-2, and telomerase activity were not significantly different in the iPSCs treated with $10{\mu}M$ Y-27632 as compared with those of untreated control iPSCs (p>0.05). Taken together, the results demonstrated that cell viability can be improved by treatment with the ROCK inhibitor Y-27632, without losing iPSC stemness characteristics.

Effect of Xenogeneic Substances on the Glycan Profiles and Electrophysiological Properties of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

  • Yong Guk, Kim;Jun Ho Yun;Ji Won Park;Dabin Seong;Su-hae Lee;Ki Dae Park;Hyang-Ae Lee;Misun Park
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.281-292
    • /
    • 2023
  • Background and Objectives: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) hold great promise as a cellular source of CM for cardiac function restoration in ischemic heart disease. However, the use of animal-derived xenogeneic substances during the biomanufacturing of hiPSC-CM can induce inadvertent immune responses or chronic inflammation, followed by tumorigenicity. In this study, we aimed to reveal the effects of xenogeneic substances on the functional properties and potential immunogenicity of hiPSC-CM during differentiation, demonstrating the quality and safety of hiPSC-based cell therapy. Methods and Results: We successfully generated hiPSC-CM in the presence and absence of xenogeneic substances (xeno-containing (XC) and xeno-free (XF) conditions, respectively), and compared their characteristics, including the contractile functions and glycan profiles. Compared to XC-hiPSC-CM, XF-hiPSC-CM showed early onset of myocyte contractile beating and maturation, with a high expression of cardiac lineage-specific genes (ACTC1, TNNT2, and RYR2) by using MEA and RT-qPCR. We quantified N-glycolylneuraminic acid (Neu5Gc), a xenogeneic sialic acid, in hiPSC-CM using an indirect enzyme-linked immunosorbent assay and liquid chromatography-multiple reaction monitoring-mass spectrometry. Neu5Gc was incorporated into the glycans of hiPSC-CM during xeno-containing differentiation, whereas it was barely detected in XF-hiPSC-CM. Conclusions: To the best of our knowledge, this is the first study to show that the electrophysiological function and glycan profiles of hiPSC-CM can be affected by the presence of xenogeneic substances during their differentiation and maturation. To ensure quality control and safety in hiPSC-based cell therapy, xenogeneic substances should be excluded from the biomanufacturing process.

Alterations and Co-Occurrence of C-MYC, N-MYC, and L-MYC Expression are Related to Clinical Outcomes in Various Cancers

  • Moonjung Lee;Jaekwon Seok;Subbroto Kumar Saha;Sungha Cho;Yeojin Jeong;Minchan Gil;Aram Kim;Ha Youn Shin;Hojae Bae;Jeong Tae Do;Young Bong Kim;Ssang-Goo Cho
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.215-233
    • /
    • 2023
  • Background and Objectives: MYC, also known as an oncogenic reprogramming factor, is a multifunctional transcription factor that maintains induced pluripotent stem cells (iPSCs). Although MYC is frequently upregulated in various cancers and is correlated with a poor prognosis, MYC is downregulated and correlated with a good prognosis in lung adenocarcinoma. MYC and two other MYC family genes, MYCN and MYCL, have similar structures and could contribute to tumorigenic conversion both in vitro and in vivo. Methods and Results: We systematically investigated whether MYC family genes act as prognostic factors in various human cancers. We first evaluated alterations in the expression of MYC family genes in various cancers using the Oncomine and The Cancer Genome Atlas (TCGA) database and their mutation and copy number alterations using the TCGA database with cBioPortal. Then, we investigated the association between the expression of MYC family genes and the prognosis of cancer patients using various prognosis databases. Multivariate analysis also confirmed that co-expression of MYC/MYCL/MYCN was significantly associated with the prognosis of lung, gastric, liver, and breast cancers. Conclusions: Taken together, our results demonstrate that the MYC family can function not only as an oncogene but also as a tumor suppressor gene in various cancers, which could be used to develop a novel approach to cancer treatment.

T Lymphocyte Development and Activation in Humanized Mouse Model

  • Lee, Ji Yoon;Han, A-Reum;Lee, Dong Ryul
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.79-92
    • /
    • 2019
  • Humanized mice, containing engrafted human cells and tissues, are emerging as an important in vivo platform for studying human diseases. Since the development of Nod scid gamma (NSG) mice bearing mutations in the IL-2 receptor gamma chain, many investigators have used NSG mice engrafted with human hematopoietic stem cells (HSCs) to generate functional human immune systems in vivo, results in high efficacy of human cell engraftment. The development of NSG mice has allowed significant advances to be made in studies on several human diseases, including cancer and graft-versus-host-disease (GVHD), and in regenerative medicine. Based on the human HSC transplantation, organ transplantation including thymus and liver in the renal capsule has been performed. Also, immune reconstruction of cells, of the lymphoid as well as myeloid lineages, has been partly accomplished. However, crosstalk between pluripotent stem cell derived therapeutic cells with human leukocyte antigen (HLA) mis/matched types and immune CD3 T cells have not been fully addressed. To overcome this hurdle, human major histocompatibility complex (MHC) molecules, not mouse MHC molecules, are required to generate functional T cells in a humanized mouse model. Here, we briefly summarize characteristics of the humanized mouse model, focusing on development of CD3 T cells with MHC molecules. We also highlight the necessity of the humanized mouse model for the treatment of various human diseases.

Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion

  • Young Hyun Che;In Young Choi;Chan Eui Song;Chulsoo Park;Seung Kwon Lim;Jeong Hee Kim;Su Haeng Sung;Jae Hoon Park;Sun Lee;Yong Jun Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.269-280
    • /
    • 2023
  • Background and Objectives: The colonic epithelial layer is a complex structure consisting of multiple cell types that regulate various aspects of colonic physiology, yet the mechanisms underlying epithelial cell differentiation during development remain unclear. Organoids have emerged as a promising model for investigating organogenesis, but achieving organ-like cell configurations within colonic organoids is challenging. Here, we investigated the biological significance of peripheral neurons in the formation of colonic organoids. Methods and Results: Colonic organoids were co-cultured with human embryonic stem cell (hESC)-derived peripheral neurons, resulting in the morphological maturation of columnar epithelial cells, as well as the presence of enterochromaffin cells. Substance P released from immature peripheral neurons played a critical role in the development of colonic epithelial cells. These findings highlight the vital role of inter-organ interactions in organoid development and provide insights into colonic epithelial cell differentiation mechanisms. Conclusions: Our results suggest that the peripheral nervous system may have a significant role in the development of colonic epithelial cells, which could have important implications for future studies of organogenesis and disease modeling.

Kinetic Properties of Extracted Lactate Dehydrogenase and Creatine Kinase from Mouse Embryonic Stem Cell- and Neonatal-derived Cardiomyocytes

  • Zonouzi, Roseata;Ashtiani, Saeid Kazemi;Hosseinkhani, Saman;Baharvand, Hossein
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.426-431
    • /
    • 2006
  • Embryonic stem cells (ESCs), representing a population of undifferentiated pluripotent cells with both self-renewal and multilineage differentiation characteristics, are capable of spontaneous differentiation into cardiomyocytes. The present study sought to define the kinetic characterization of lactate dehydrogenase (LDH) and creatine kinase (CK) of ESC- and neonatal-derived cardiomyocytes. Spontaneously differentiated cardiomyocytes from embryoid bodies (EBs) derived from mouse ESC line (Royan B1) and neonatal cardiomyocytes were dispersed in a buffer solution. Enzymes were extracted by sonication and centrifugation for kinetic evaluation of LDH and CK with spectrophotometric methods. While a comparison between the kinetic properties of the LDH and CK of both groups revealed not only different Michaelis constants and optimum temperatures for LDH but also different Michaelis constants and optimum pH for CK, the pH profile of LDH and optimum temperature of CK were similar. In defining some kinetic properties of cardiac metabolic enzymes of ESC-derived cardiomyocytes, our results are expected to further facilitate the use of ESCs as an experimental model.

Trends in the development of human stem cell-based non-animal drug testing models

  • Lee, Su-Jin;Lee, Hyang-Ae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.441-452
    • /
    • 2020
  • In vivo animal models are limited in their ability to mimic the extremely complex systems of the human body, and there is increasing disquiet about the ethics of animal research. Many authorities in different geographical areas are considering implementing a ban on animal testing, including testing for cosmetics and pharmaceuticals. Therefore, there is a need for research into systems that can replicate the responses of laboratory animals and simulate environments similar to the human body in a laboratory. An in vitro two-dimensional cell culture model is widely used, because such a system is relatively inexpensive, easy to implement, and can gather considerable amounts of reference data. However, these models lack a real physiological extracellular environment. Recent advances in stem cell biology, tissue engineering, and microfabrication techniques have facilitated the development of various 3D cell culture models. These include multicellular spheroids, organoids, and organs-on-chips, each of which has its own advantages and limitations. Organoids are organ-specific cell clusters created by aggregating cells derived from pluripotent, adult, and cancer stem cells. Patient-derived organoids can be used as models of human disease in a culture dish. Biomimetic organ chips are models that replicate the physiological and mechanical functions of human organs. Many organoids and organ-on-a-chips have been developed for drug screening and testing, so competition for patents between countries is also intensifying. We analyzed the scientific and technological trends underlying these cutting-edge models, which are developed for use as non-animal models for testing safety and efficacy at the nonclinical stages of drug development.

Development of Auto Antigen-specific Regulatory T Cells for Diabetes Immunotherapy

  • Jianxun Song
    • IMMUNE NETWORK
    • /
    • v.16 no.5
    • /
    • pp.281-285
    • /
    • 2016
  • CD4+ regulatory T cells (Tregs) are essential for normal immune surveillance, and their dysfunction can lead to the development of autoimmune diseases, such as type-1 diabetes (T1D). T1D is a T cell-mediated autoimmune disease characterized by islet b cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. Tregs play a critical role in the development of T1D and participate in peripheral tolerance. Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy Tregs to treat T1D as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain undefined, especially molecular mechanisms that direct differentiation of such Tregs. Auto Ag-specific PSC-Tregs can be programmed to be tissue-associated and infiltrate to local inflamed tissue (e.g., islets) to suppress autoimmune responses after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. Developing auto Ag-specific PSC-Tregs can reduce overall immunosuppression after adoptive transfer by accumulating inflamed islets, which drives forward the use of therapeutic PSC-Tregs for cell-based therapies in T1D.