• Title/Summary/Keyword: Plunge speed

Search Result 24, Processing Time 0.026 seconds

Optimizing the Friction Stir Spot Welding Parameters to Attain Maximum Strength in Al/Mg Dissimilar Joints

  • Sundaram, Manickam;Visvalingam, Balasubramanian
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.23-30
    • /
    • 2016
  • This paper discusses the optimization of friction stir spot welding (FSSW) process parameters for joining Aluminum alloy (AA6061-T6) with Magnesium alloy (AZ31B) sheets. Prior to optimization an empirical relationship was developed to predict the Tensile Shear Fracture Load (TSFL) incorporating the four most important FSSW parameters, i.e., tool rotational speed, plunge rate, dwell time and tool diameter ratio, using response surface methodology (RSM). The experiments were conducted based on four factor, five levels central composite rotatable design (CCD) matrix. The maximum TSFL obtained was 3.61kN, with the tool rotation of 1000 rpm, plunge rate of 16 mm/min, dwell time of 5 sec and tool diameter ratio of 2.5.

원통 플런지 연삭에서의 연삭력에 관한 연구

  • 박종찬;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.34-38
    • /
    • 1996
  • Cylindrical plunge grinding is widely used for final machining process of precision parts such as automobile, aircraft, measurement units. In order to make parts which have high precison accuracy and high surface integrity, it is neccessary to consider grinding characteristics. these grinding characteristics are closely related grinding force. Soin this study, to examine closely characteristics of grinding force, effects of dressing condition, depth of cut and speed ratio on grinding force are considered. As the result, It is shown that grinding forces are affected bydressing condition, depth of cut and speed ratio and that there exist threshod grinding force and it also affected by dressing conditon.

  • PDF

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.

PATH OPTIMIZATION OF FLAPPING AIRFOILS BASED ON NURBS

  • Kaya Mustafa;Tuncer Ismail H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.263-267
    • /
    • 2006
  • The path of a flapping airfoil during upstroke and down-stroke is optimized for maximum thrust and propulsive efficiency. The periodic flapping motion in combined pitch and plunge is described using Non-Uniform B-Splines(NURBS). A gradient based algorithm is employed for optimization of the NURBS parameters. Unsteady, low speed laminar flows are computed using a Navier-Stokes solver in a parallel computing environment based on domain decomposition. It is shown that the thrust generation is significantly improved in comparison to the sinusoidal flapping motion. For a high thrust generation, the airfoil stays at a high effective angle of attack for short durations.

  • PDF

Vehicle Shudder Associated with Axial Thrust Force of C.V.Joint For Automobile (자동차용 등속조인트의 AXIAL FORCE와 VEHICLE SHUDDER(I))

  • 오승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.198-208
    • /
    • 1996
  • The plunge joints of C.V. Joint for vehicle tend to produce a cyclic axial disturbance at a frequency of three of six times shaft speed, in which this distrubance caused by internal frictional effect is related to joint angle, rotational speed, torque, and joint size. This principal axial thrust force might make vehicle shuddered when coinciding with vehicle frequency of tranverse direction, and be one of reasons to have driver feel uncomfortable, unesay, while driving vehicle. The paper makes analysis of axial thrust force & vehicle shudder through computer simulation, comparing the result with experimental data, and reviewing the effect by changing of variables such as dimensions and driving conditions.

  • PDF

Fundamental Study for Optimization of Grinding Condition Using STD11 Material (금형강(STD11)의 연삭가공조건 최적화를 위한 기초 연구)

  • 이영석;하만경;곽재섭;류인일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.903-906
    • /
    • 1997
  • For the net shape manufacturing, grinding is a important process that influences directly the accuracy and the integrity of products. We studied and researched the grinding force, surface roughness, and grinding wheel durability, according to the change of a feed speed of the table and a depth of the cut step by step with experiment that it is used to WA wheel. Workpiece materials were used STDII. The purpose of this study proposes the basic data for design of the machine tool and for controlling the machining parameters to obtain optimum performance of plunge grinding system during operation.

  • PDF

2 Dimensional Modeling of Centerless Grinding -Infeed (Plunge) Process-

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.25-31
    • /
    • 2003
  • A computer simulation model for investigating a two-dimensional (2-D) rounding mechanism in a centerless grinding process is described. This model includes the interference phenomena and the concept of machining elasticity. Since initial contact points are used as a reference, the result of this simulation is not affected by the location of the reference circle center and the radius of the reference circle. Also, details of the machining factor are studied by using process variables (grinding wheel speed, wheel specification, workpiece speed, dressing condition, etc.). The effect of the threshold grinding force on the size of ground workpiece is investigated. For the verification of this method, simulation results are compared with the experimental work.

Characteristics of Dissimilar Materials Al alloy(A6005)-Mg alloy(AZ61) Under Friction Stir Welding for Railway Vehicle (철도차량 적용을 위한 Al alloy(A6005)-Mg alloy(AZ61) 이종소재 마찰교반용접 특성 연구)

  • Lee, Woo-Geun;Kim, Jung-Seok;Sun, Seung-Ju;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.706-713
    • /
    • 2016
  • In this study, the welding characteristics of friction stir welding were investigated in accordance with the tool plunge position and cooling to the base materials for the joining of dissimilar materials (A6005-AZ61). Other different welding conditions, such as the tool rotation speed and welding speed, were fixed to 500rpm-30mm/min, respectively, and welding was then carried out by placing the Mg alloy (AZ61) on the advancing side and Al alloy(A6005) on the retreating side. Welding was conducted under six different conditions. To investigate the welding characteristic, tensile test and microstructure observations using an optical microscope were carried out. As the tensile test result, the maximum strength appeared under the condition in which the tool is moved 1 mm to the Mg alloy direction and cooling to the base materials. Under the same welding conditions, the strength with cooling was approximately two times higher than that without cooling. The tool was located in each direction of 1.7 mm from the weld line. Therefore, in the excessive off-set of tool position, the welding integrity was in an extremely poor condition due to the lack of stirring. This study was confirmed by the A6005-AZ61 dissimilar friction stir welding the welding speed and the tool rotation speed. In addition, the temperature control and tool plunge position are important welding parameters.

Flutter Analysis of 2D Airfoil with Gurney Type Flap (Gurney 플랩이 장착된 2차원 익형의 플러터 해석)

  • Bae, Eui-Sung;Joo, Wan-Don;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • Flutter analysis of NACA 0012 with Gurney flap was conducted in time domain. Flutter analysis was performed with a conjunction of two governing equations; one is 2D Navier-Stokes equation and, the other is Lagrange equation of two dimensional plunge & pitch model. Both governing equations were coupled by loose-coupling method. From the computed results, the effect of Gurney flap was concluded to move the flutter boundary of NACA 0012 downward, which means flutter occurs at lower speed than that of NACA 0012. Although flutter boundary of gurney flap was above the safety margin when mach number was lower than 0.85, there might be a possibility of crossing the safety margin when mach number was between 0.85 and 0.9. For safety, the effect of gurney flap needs to be investigated carefully before using it.

Influence of Surface Roughness of Tools on the Friction Stir Welding Process

  • Hartmann, Michael;Bohm, Stefan;Schuddekopf, Sven
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.22-28
    • /
    • 2014
  • Most publications on friction stir welding describe phenomena or results with given process parameters like feed rate, rotation speed, angle and depth of penetration. But without a complete documentation of tool design, the results under the same process parameters are completely different. For this purpose, the Institute of Cutting and Joining Manufacturing Processes (tff), University of Kassel investigated the influence of tool roughness on the friction stir welding process. Therefore a defined surface finish was produced by turning and die sinking. As basis of comparison the constant parameters were rotation speed, feed rate, tilt angle and a heel plunge depth. Sound butt-welds were produced in aluminium alloy 6082 (AlMgSi1) with 1.5 mm sheet thickness with a turned reference tool with a surface of $Ra=0.575{\mu}m$ in position controlled mode. The surfaces are manufactured from a very fine to a very rough structure, classified by the VDI-classes with differences in the arithmetical mean roughness. It can be demonstrated with the help of temperature measures, that less heat is generated at the surfaces of the shoulder and the pin by the higher roughness due to lower active friction contact surface. This can also be seen in the resulting wormhole defects.