• Title/Summary/Keyword: Plug-in Hybrid Car

Search Result 11, Processing Time 0.023 seconds

A Patent Analysis on the Battery and Rechageable System of the Plug-in Hybrid Car (플러그인 하이브리드 자동차의 배터리와 충전시스템의 특허분석)

  • Chang, Jin-Geon;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.97-107
    • /
    • 2009
  • Recent technologies of the car are focused on improving vehicle's fuel efficiency and developing alternative energy sources. These technologies bring on the development of hybrid car. On the other hand, because of short driving distance, low efficiency of charging and high price, energy storage system need to improve the storage capability. It is very important to understand the existing technologies, grasp the existing patent and establish the technical target to improve the energy storage system. In this paper, technology trends of energy storage system of the hybrid car are analyzed. This study was based on the applied and registered patent in Korea, Japan, U.S.A and Europe until December 2008. The analyses are divided into two categories: a battery system and charging system of the hybrid car. The facts of the level of technology, trends of the R&D of leading companies, key patents, blank of the technology were analyzed. Finally the future R&D strategy of hybrid car are established.

Analysis of Fuel Economy for Series Plug-in Hybrid Electric Bus according to Engine Operation Strategy Based on Simulation (직렬형 플러그인 하이브리드 전기 버스의 엔진 구동 전략에 따른 시뮬레이션 기반 연비 분석)

  • Kim, Jinseong;Lee, Chibum;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.102-107
    • /
    • 2014
  • Because of high oil prices and emission gas problems, many governments tighten regulation of fuel economy and emission gas. For Passenger car, there are many researches for plug-in hybrid electric vehicles and they are being manufactured. On the other hand, there are few researches for plug-in hybrid electric bus that is heavy commercial vehicle. In this study, analysis of fuel economy for series plug-in hybrid electric bus according to engine operation strategy based on simulation is conducted. Forward simulator is developed using Autonomie. Engine operation strategies consist on constant engine operation strategy and engine on/off operation strategy. Considering the engine operation strategy, results of vehicle speed, engine operating points and fuel economy are obtained and analyzed. As a result, engine on/off operation strategy has more advantage than constant engine operation strategy in terms of fuel economy.

Study on the Fueling Economic Feasibility of Plug-in Hybrid Electric Vehicle (플러그인 하이브리드 전기자동차의 연료 경제성에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.255-263
    • /
    • 2009
  • The most concerning issue of these days is the energy crisis caused by increasing threat of dependence on imported oil and volatile market trend. Under these circumstances, the PHEV(plug-in hybrid electric vehicle) is drawing attention for the next generation's car which could give a chance to decrease the dependence on imported oil and reduce the environmental impact of vehicle. The fueling cost of PHEV, one of the core factor of decision about buying car, should be calculated in the circumstances of Korea to make sure that PHEV has competitive power in real market. The fuel cost saving of PHEV versus CV(conventional vehicle) is simulated and discussed in the condition of increasing gasoline cost, electricity rate, and city-gas rate. In conclusion, the PHEV60-FS shows the best economic feasibility when gasoline price goes up. The PHEV20 has the most stable economic feasibility as electricity rate increases. The fuel cell cogeneration system for RPG could be an alternative for charger of PHEV in the near future.

Study on the Smart Charging for Plug-in Hybrid Electric Vehicle (플러그인 하이브리드 전기자동차의 스마트 충전에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.349-352
    • /
    • 2008
  • The most concerning issue in these days is the energy crisis by increasing threat of global warming and depletion of natural resources. In the situations, the Plug-in Hybrid Electric Vehicle (PHEV) is drawing attention from many countries for the next generation's car which has higher fuel efficiency and lower environmental impact. This paper presents simulation results about the limit capacity of central power-grid which doesn't have enough surplus electric power for charging PHEVs. Therefore, this paper also presents a smart charging system that can charge the PHEVs with a function of distributing demands of charging. The smart charging system is an agent facility between the government and consumer, which can recommend the best time to charge the battery of PHEVs by the lowest energy cost. This function of choosing time-slots is the technical system for the government which wants to control the consumption rate of electric power for PHEVs. Finally, this paper presents the economic feasibility of PHEVs from the two kinds of price system, midnight electric price and home electric price.

  • PDF

Reliability Verification of Battery Disconnecting Unit (BDU 신뢰성 검증)

  • Yoon, Hye-Lim;Ryu, Haeng-Soo;Ji-Hong;Hong-Tae, Park
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.866-867
    • /
    • 2011
  • As part of the green growth, The Green Car has attracted wide attention. Types of the Green Car are Electric Vehicle, Plug-in Hybrid Electric Vehicle, Hybrid Electric Vehicle, Fuel Cell Vehicle and Clean Diesel Vehicle. Of these, The electric vehicle is equipped with the BDU(Battery Disconnecting Unit). BDU is supplying stable battery power and blocking it to protect electrical system of the electric vehicle. The BDU consists of electric components such as current sensor, fuse and pre-charge resistor. These must pass Voltage withstand test, Salt mist test, Thermal shock test, Vibration test and Short-circuit test commonly to verify reliability of the electric components. In addition, The current sensor should be verified whether normal operation. The breaking capacity of fuse should be verified. The durability of pre-charge resistor should be verified by supplying battery power and blocking it repeatedly. The reliability of BDU as well as the electric vehicle is secured by verifying the reliability of electric components. In addition, It will contribute to the acceleration and promotion of Green Car Technology.

  • PDF

Impact Assessment of Plug-in Hybrid Electric Vehicles on Electric Utilities (플러그인 하이브리드 자동차의 시장 형성 시의 전력망에의 영향 분석)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2001-2006
    • /
    • 2008
  • The most concerning issue of these days is the energy crisis by increasing threat of dependency on foreign oil and its volatility itself. In the situations, the PHEV is drawing attention for the next generation's car which could give a chance to decrease the dependency on foreign oil. As well as, the Korean electric power infrastructure is a strategic national asset that is under utilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver necessary energy to charge the PHEVs which could penetrate the market within few years. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the energy dependency. This paper investigate the technical potential and impacts of using the existing idle capacity of the electric infrastructure in conjunction with the emerging PHEVs technology to meet the majority of daily energy needs of the Korean LDV fleet.

  • PDF

Study on the Power-Grid Impact and Optimal Charging Control Strategy with PHEV Market Penetration (PHEV 시장 형성 시 전력망에 미치는 영향 및 최적 충전 제어 전략에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.278-287
    • /
    • 2009
  • Plug-in hybrid electric vehicle (PHEV) with capability of being recharged from the power-grid will reduce oil consumption. Also, the PHEV will affect the utility operations by adding additional electricity demand for charging. In this research, the power-grid impact by demand of PHEV charging is presented and the optimal charging control strategy for utility operators is proposed with simulated data. The penetration of PHEV is assumed to be 50% in the circumstances of Korean passenger car market and Korean power-grid market limitedly. To obtain smooth load shape and utilize the surplus electricity in power-grid at midnight and dawn, the peak of charging demand should be controlled to be located before 4:00 a.m., and the time slot which can supply the electricity power to PHEV should be allowed between 1:00 a.m.$\sim$7:00 a.m.

Green pathway to hydrogen fuel cell vehicle (수소 연료전지차로의 전환을 위한 녹색 전략)

  • Lee, Munsu;Lee, Minjin;Lee, Younghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.152.1-152.1
    • /
    • 2011
  • This study analyzes transitions to a green path in transportation system in South Korea. We develop transportation system model with four new technology options, green cars; Hybrid electric vehicle, plug-in hybrid vehicle, electric vehicle and fuel cell vehicle. Among those technologies fuel cell vehicle is the best option assuming no GHG emissions when driving. We use MESSAGE model to get an optimal solution of pathway for high deployment of fuel cell vehicles under the Korea BAU transportation model. Among hydrogen production sources, off gas hydrogen is most economic since it is hardly used to other chemical sources or emits in South Korea. According to off gas hydrogen projection it can run 1.8 million fuel cell vehicles in 2040 which corresponds to 10% of all passenger cars expected in Korea in 2040. However, there are concerns associated with technology maturity, cost uncertainty which has contradictions. But clean pathway with off gas and renewable sources may provide a strong driving force for energy transition in transportation in South Korea.

  • PDF

Effect of Weldbond Process on the Weldability of 1.2GPa Grade Galvannealed TRIP Steel for Car Body Manufacturing (차체용 1.2GPa급 합금화아연도금 TRIP강의 용접성에 미치는 Weldbond 공정의 효과)

  • Lee, Jong-Dae;Lee, Hye-Rim;Kim, Mok-Soon;Seo, Jong-Deok;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.28-34
    • /
    • 2016
  • Galvannealed(GA) steels are now generally used in car body manufacturing for corrosion resistance. In this study, the weldability and joint mechanical behavior of a newly developed 1.2GPa grade GA ultra high strength TRIP(transformation induced plasticity) steel was investigated for three joining processes, such as adhesive bonding, resistance spot welding and weldbonding. Under both shear and peel stress conditions, the failure mode of the adhesive joints were the mixture of the adhesive cohesive failure, adhesive interface failure and coating layer failure. It means that the adhesion strength of GA coating onto the base metal was similar to that of adhesive bonding onto the GA coating. Under the shear stress condition, the weldbonding exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel because the strength of adhesive bond overwhelmed that of the resistance spot weld. Under the peel stress condition, the weldbonding also exerted to expand the optimal spot welding condition of 1.2GPa GA TRIP steel by inducing the tear fracture mode rather than the partial plug fracture mode.

Development of Urban Driving Cycle for Performance Evaluation of Electric Vehicles Part I : Development of Driving Cycle (전기 자동차 성능 평가를 위한 도심 주행 모드 개발 Part I : 주행 모드 개발)

  • Yang, Seong-Mo;Jeong, Nak-Tak;Kim, Kwang-Seup;Choi, Su-Bin;Wang, Maosen;Kim, Hyun-Soo;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.117-126
    • /
    • 2014
  • Recently, due to various environmental problems such as global warming, increasing of international oil prices and exhaustion of resource, a paradigm of world automobile market is rapidly changing from vehicles using internal combustion engine to eco-friendly vehicles using electric power such as EV (Electric Vehicle), HEV (Hybrid Electric Vehicle), PHEV (Plug-in Hybrid electric Vehicle) and FCEV (Fuel Cell Electric Vehicle). There are many driving cycles for performance evaluation of conventional vehicles. However there is a lack of researches on driving cycle for EV. This study is composed of part 1 and part 2. In this paper part 1, in order to develop urban driving cycle for performance evaluation of electric vehicles, Gwacheon-city patrol route of police patrol car was selected. Actual driving test was performed using EV. The driving data such as velocity, time, GPS information etc. were recorded. GUDC-EV (Gwacheon-city Urban Driving Cycle for Electric Vehicles) including road gradient was developed through the results of analyzing recorded data. Reliability of the driving cycle development method was substantiated through comparison of electricity performance. In the second part of this study, the developed driving cycle was compared to simulation result of the existing urban driving cycle. Verification of the developed driving cycle for EV performance evaluation was described.