• Title/Summary/Keyword: Plug-Flow

Search Result 211, Processing Time 0.021 seconds

THE EFFECT OF OXYGEN ON PERCHLORATE REDUCTION IN A BIOFILM REACTOR

  • Choi, Hyeok-Sun
    • Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.148-154
    • /
    • 2007
  • The purpose of this research was to investigate the effects of low concentration of oxygen on reduction of perchlorate, especially low perchlorate influent concentrations in a biofilm reactor, as well as the effect of flow pattern in a biofilm reactor. Dissolved oxygen averaging 1 mg/L did not inhibit reduction of influent perchlorate from 23 to $426\;{\mu}g/L$ in the biofilm reactors when sufficient acetate was added, probably due to limitation of oxygen diffusion into the biofilm. Influent perchlorate ranging from 23 to $426\;{\mu}g/L$ was reduced to below detection level ($4\;{\mu}g/L$) in the presence of 1 mg/L dissolved oxygen (DO). Chloride was produced in a ratio of $0.37gCl^-/g{ClO_4}^-$ and $0.35gCl^-/g{ClO_4}^-$ in plug flow and recirculation biofilm reactor which is similar to stoichiometric amount ($0.36gCl^-/g{ClO_4}^-$) indicating complete perchlorate reduction at $426\;{\mu}g/L$ of ${ClO_4}^-$ feeding. At $23\;{\mu}g/L$L influent perchlorate, total biomass solids were 3.18 g and 2.81 g in the plug flow and recirculation biofilm reactors. The most probable number(MPN) analysis for perchlorate-reducing bacteria showed $10^4$ to $10^5\;cells/cm^2$ in both biofilm reactors throughout the experiments. The effluent perchlorate concentrations were not significantly different in the two different flow regimes, plug flow and recirculation biofilm reactors.

Numerical analysis on two-phase flow-induced vibrations at different flow regimes in a spiral tube

  • Guangchao Yang;Xiaofei Yu;Yixiong Zhang;Guo Chen;Shanshan Bu;Ke Zhang;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1712-1724
    • /
    • 2024
  • Spiral tubes are used in a wide range of applications and it is significant to understand the vibration introduced by two-phase flow in spiral tubes. In this paper, the numerical method is used to study the vibration induced by the gas-liquid two-phase flow in a spiral tube with different flow regimes. The pressure fluctuation characteristics at the pipe wall and the solid vibration response characteristics are obtained. The results show that the motion of small bubbles in bubbly flow leads to small pressure fluctuations with low-frequency broadband (0-50 Hz). The motion of the gas plug in the plug flow causes small amplitude periodic pressure fluctuation with a shortened low-frequency broadband (0-15 Hz) compared to the bubbly flow. The motion of the gas slug in the slug flow causes large periodic fluctuations in pressure with a significant dominant frequency (6-7 Hz). The wavy flow is very stable and has a distinct main frequency (1-2 Hz). The vibration regime in the bubbly flow and wave flow are close to the first-order mode, and the vertical vibrating component is dominant. The plug flow and slug flow excite higher-order vibration modes, and the lateral vibration component plays more important part in the vibration response.

Fluid-mud deposits in the Early Cretaceous McMurray Formation, Alberta, Canada (캐나다 앨버타주 전기 백악기 맥머레이층의 유성이토 퇴적층)

  • Oh, Juhyeon;Jo, Hyung Rae
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.477-488
    • /
    • 2018
  • Fluid muds commonly occur in estuarine environments, but their ancient examples have rarely been studied in terms of depositional characteristics and processes. Cores of estuarine channel deposits of the Early Cretaceous McMurray Formation, Alberta, Canada show various mudstone layers that possess depositional characteristics of high clay-concentration flows. These mudstone layers are examined in detail through microscopic observation of thin sections and classified into three microfacies (<1 to 25 mm thick) on the basis of sedimentary texture and structures. Structureless mudstone (Microfacies 1) consists mainly of clay particles and contains randomly dispersed coarser grains (coarse silt to fine sand). This microfacies is interpreted as being deposited by cohesive mud flows, i.e., fluid muds, which possessed sufficient strength to support suspended coarser grains (quasi-laminar plug flow). Silt-streaked mudstone (Microfacies 2) mainly comprises mudstone with dispersed coarse grains and includes very thin, discontinuous silt streaks of coarse-silt to very-fine-sand grains. The texture similar to Microfacies 1 indicates that Microfacies 2 was also deposited by cohesive fluid muds. The silt streaks are, however, suggestive of the presence of intermittent weak turbulence under the plug (upper transitional plug flow). Heterolithic laminated mudstone (Microfacies 3) is characterized by alternation of relatively thick silt laminae and much thinner clay laminae. It is either parallel-laminated or low-angle cross-laminated, occasionally showing low-amplitude ripple forms. The heterolithic laminae are interpreted as the results of shear sorting in the basal turbulent zone under a cohesive plug. They may represent low-amplitude bed-waves formed under lower transitional plug flows. These three microfacies reflect a range of flow phases of fluid muds, which change with flow velocities and suspended mud concentrations. The results of this study provide important knowledge to recognize fluid-mud deposits in ancient sequences and to better understand depositional processes of mudstones.

Cavitation Visualization Test for Shape Optimization of Bottom Plug in Reversing Valve (공동현상 가시화 실험을 통한 절환밸브 바텀플러그 형상 최적화)

  • Kim, Tae An;Lee, Myeong Gon;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.913-918
    • /
    • 2016
  • A three-way reversing valve, which provides rapid and accurate changes in the water flow direction without requiring any precise control device, is used in automotive washing machines to remove oil and dirt that remain on the machined engine and transmission blocks. Because of the complicated shape of the bottom-plug, however, cavitation occurs in the plug. In this study, the cavitation index and POC (percent of cavitation) were used to quantitatively evaluate the cavitation effect occurring in the bottom-plug on the downstream side. An optimal shape design was conducted via parametric study with a simple CAE model to avoid time-consuming CFD analysis and hard-to-achieve convergence. To verify the results of the numerical analysis, a flow visualization test was conducted using a specimen prepared according to ISA-RP75.23. In this test, the flow characteristics, such as cavitation occurring on the downstream side, were investigated using flow test equipment that included a valve, pump, flow control system, and high-speed camera.

Design of a Wind Tunnel for Plug Seedlings Production under Artificial Light and Aerodynamic Characteristics above Plug Stand (인공광하의 공정육묘용 풍동 설계 및 공정묘 개체군상의 공기역학적 특성)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.429-435
    • /
    • 1996
  • A wind tunnel consisting of two air flow conditioners with polycarbonate pipes, a plant growth room, a suction fan and fan controller, and fluorescent lamps, was designed to investigate the interactions between the growth of plug seedlings under artificial light and their Physical environments. Light transmissivities in the plant growth room based on the photosynthetic photon flux density and photosynthetically active radiation was appeared to be 96.3% and 96.8%, respectively. Measurement showed a uniformity in the vertical profiles of air current speed at the middle and rear regions of plug trays in wind tunnel. This result indicated that the development of a wind tunnel based on the design criteria of the American Society of Mechanical Engineers was adequate. Air current speed inside the plug stand was significantly decreased due to the resistance by the leaves of plug seedlings and boundary layer developed over and below the plug stand. Driving force to facilitate the diffusion of gas inside the plug stand might be regarded as extremely low. Aerodynamic characteristics above the plug stand under artificial light were investigated. As the air current speed increased, zero plane displacement decreased but roughness length and frictional velocity increased. Zero plane displacement linearly increased with the average height of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on the microclimate over and inside the plug stand and to collect basic data for a large-scale plug production under artificial light in a semi-closed ecosystem.

  • PDF

Heat Transfer to a Downward Moving Solid Particle Bed Through a Circular Tube (원형튜브내에서 이동중인 고체입자층의 열전달 특성연구)

  • 이금배;박상일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1551-1558
    • /
    • 1994
  • An experiment was conducted to investigate whether an equation of heat transfer coefficient derived form energy equation of two-phase plug flow can be actually applied to the industrial field. The heat is constantly transfered to the sand beds from the wall of heat exchanger while the sand moves down through cylindrical heat exchanger by gravity from feed hooper. To increase heat transfer, turbulators such as glass ball and steel pipe packings were used. In addition, the experiment in the case of fluidizing the sand beds was also carried out. The temperatures of the sand beds and the wall were measured along the heat exchanger axis. The density and porosity of the sand beds were also measured. The deviations of the mean velocity of sands from the velocity on the wall surface because of the slip conditions on the wall were negligible (within 3%). The heat transfer coefficients when the turbulators were used and when the sand beds were fluidized were found to be much greater than those of the plain plug flow.

IN-CYLINDER FLOW ANALYSIS USING WAVELET ANALYSIS

  • Park, D.;Sullivan, P.E.;Wallace, J.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.289-294
    • /
    • 2006
  • Better fundamental understanding of the interactions between the in-cylinder flows and combustion process is an important requirement for further improvement in the fuel economy and emissions of internal combustion(IC) engines. Flow near a spark plug at the time of ignition plays an important role for early flame kernel development(EFKD). Velocity data measurements in this study were made with a two-component laser Doppler velocimetry(LDV) near a spark plug in a single cylinder optical spark ignition(SI) engine with a heart-shaped combustion chamber. LDV velocity data were collected on an individual cycle basis under wide-open motored conditions with an engine speed of 1,000rpm. This study examines and compares the flow fields as interpreted through ensemble, cyclic and discrete wavelet transformation(DWT) analysis. The energy distributions in the non-stationary engine flows are also investigated over crank angle phase and frequency through continuous wavelet transformation(CWT) for a position near a spark plug. Wavelet analysis is appropriate for analyzing the flow fields in engines because it gives information about the transient events in a time and frequency plane. The results of CWT analysis are provided and compared with the mean flows of DWT first decomposition level for all cycles at a position. Low frequency high energy found with CWT corresponds well with the peak locations of the mean velocity. The high frequency flows caused by the intake jet gradually decay as the piston approaches the bottom dead center(BDC).

A Study on Emission Characteristics according to Spark Plug Location in a Single SI Engine (점화플러그 위치에 따른 SI 단기통 엔진의 배출가스특성에 관한 연구)

  • Kim, Dae-Yeol;Han, Young-Chool;Baik, Doo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2082-2087
    • /
    • 2004
  • In this study, the variation of spark plug location in the combustion chamber was investigated for the sake of emission characteristics from SI engine by using PDA valve. The swirl is ong of the important parameters that effects emission characteristics. PDA valve has been used to satisfy the requirements of sufficient swirl generation to improve combustion and emission reduction to effect on flow profile on a combustion chamber. Especially, the variation of spark plug location have an important effect to analyze exhaust gas and the early flame propagative process. Therefore, this test is forced that injection timing, spark timing and intake air motion govern the stable combustion. From the results, it showed that the variable spark plug location and PDA valve can be reduced exhaust gas.

  • PDF

Characteristics of $\beta$-glucosidase Immobilized on the Diazotized Chitin in Bioreactors (Diazotized Chitin에 고정된 $\beta$-glucosidase의 생물 반응기에서의 동특성)

  • 김종덕;이경희송승구
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.147-156
    • /
    • 1991
  • Diazotized chitin (CHITN) was synthesized reacting with NaN3 and HCl to alkaline hydrolyzed chitin for the support of immobilized enzyme. Immobilized $\beta$-glucosidase on diazotized chitin(CHITN-Gase) was produced reacting with glutaraldehyds as bifunctional reagent. CHITN-Gase activities were determined reacting with p-nitrophenol-$\beta$-D-glucopyranoside in plug flow reactor as a reference. Optimum temperature, optimum pH, reaction constant and deactivation rate were determined with variation of flow rate and H/D. The particle size of immobilized enzyme in the best was, 35 mesh (CHITN35-Gase). The optimum conditions of immobilized enzyme were $70^{\circ}C$ in temperature and 5.0 in pH. Diameter and flow rate of plug flow reactor in the best was 8.5mm in diameter and 0.8ml/min in flow rate. Reaction constant was mainly influenced by electrostatic force. The best glucose hydrolizing activities of CHITN3 5-Gase was 3.34$\times$10-5 M/1. while that of native-$\beta$-glucosidase was 2.44$\times$10-5 M/1.

  • PDF

A Preliminary Study on CF4 Decomposition Reaction Mechanism Using High Temperature Flow Reactor (고온 유동 반응기를 이용한 CF4 분해 반응기구에 대한 선행 연구)

  • Kim, Yoeng-Jae;Lee, Dae Keun;Kim, Seung Gon;Noh, Dong-Soon;Ko, Chang-Bog;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.157-159
    • /
    • 2015
  • In this study, $CF_4$ decomposition was experimentally investigated in a high temperature flow reactor. Effects of temperature, reactant composition and concentration, and residence time on its decomposition into other stable species were analyzed. Then the results were compared to numerical results obtained using Chemkin Plug Flow Reactor model with Princeton Chemistry. As a preliminary result higher decomposition rate is obtained for higher reactor temperature and long residence time when proper reactants are supplied.

  • PDF