• Title/Summary/Keyword: Plow

Search Result 125, Processing Time 0.032 seconds

Study on the Dynamic Balance of the Power-tiller Plow System (동력경운기 Plow System의 역학적 평행개선에 의한 연구)

  • 송현갑
    • Journal of Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.26-39
    • /
    • 1980
  • A study was investigated to find out the mechanical optimum conditions of power tiller-plow system on both paddy field and upland. Mathematical model was developed for the theoretical analysis of this system and the experimentation on the field was carried out with two different sizes of 5PS and 8PS power tiller equipped with rubber tire. 1) The relationship between the plowing depth and draft resistance of the power tiller-plow system was a quadratic function. 2) The minimum point of the specific draft resistance of the 5 PS plow was found at the smaller plowing depth than that of 8 PS plow, therefore we can find that the curved surface of 5PS plow bottom should be improved for the effective plowing operation. 3) As the improvement of the mechanical balance by the desirable change of the curved surface of plow bottom, the relative position of hitch point and dimension of plow beam would be realized, the 5 PS power tiller could be used to plow deeply (about 16-17cm). 4) The virtual acting point of the total draft resistance on the plow bottom approached to the land side as the plowing depth increased. 5) The resultant of vertical reaction force $R_2$ on the landside was increased with the plowing depth, while the vertical reaction force $R_1$ on the wheel was decreased as the slope angle of the body of power tiller increased. 6) For the effective plowing operations ; a) The slope angle of the body should be as small as possible. b) The diameter of the wheel should be as small possible. c) The horizontal and vertical distances $l_2, h_1$ between the wheel axis and plow bottom should be as large as possible. 7) To use the 5PS power tiller as the major unit of agricultural machinery, the curved surface of the 5 PS plower bottom and the mechanism of attachment between the power tiller and the plow should be changed as the indications of this study, and in addition to these, the new operation method of the field work should be developed.

  • PDF

A Comparison Test of Eastern and Western Plow in Draft Resistance (우리나라 쟁기와 Plow의 산인저항의 관한 비교연구)

  • 최재갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.3
    • /
    • pp.2035-2042
    • /
    • 1970
  • Korean Janggi and Western plow to have developed for a long time in the east and west were tested and compared in their draft resistance. The charaderistic of Korean Janggi and plow to be able to make deep plowing, on of the most important factors influeneed the increased yield, were ofserved. The study was undertaken to obtain these basic factors' to device and construct the deep plowing Janggi. The results were as follow; 1. The draft resistance of Korean Janggi far less than that of plow and on the dry field, the influence of soil moisture contant to the draft resistance was larger in the Korean Janggi than in the western plow, but on the rice paddy, there was not differences between them. 2. The plow was more stable than that of Janggi in their operation. 3. The relation ship between the specific draft resistance and plowing depth was shown bygthe carved equation. $$K=Ax+\frac{B}{x}+C$$(K ; specific draft restance, x; plowing depth) A, B, C; Constant controled by soil and instrument factor) 4. Minimam values of the specific draft resistance were as follow; a. On the dry field; Korean Janggi; x = $8{\sim}14cm$ $4K=280{\sim}330gr/cm^2$$ Westean plow; x=$10{\sim}12cm$ $$K=480{\sim}490gr/cm^2$$ 6. On the rice paddy; Korean Janggi; x=$8{\sim}12cm$ $$K=255{\sim}280gr/cm^2$ Western plow; x=$7{\sim}10cm$ $$K=415{\sim}420grc/m^2$$

  • PDF

Optimum Design of Jaenggi(Korean plow) Bottoms to Improve the Tillage Performance(I) -The Geometrical Characteristics of the Jaenggi Bottoms- (경운성능(耕耘性能) 향상(向上)을 위한 쟁기 이체(犂體)의 적정(適正) 설계(設計)에 관(關)한 연구(硏究) -쟁기 이체곡면(犂體曲面)의 기하학적(幾何學的) 특성(特性)-)

  • Chung, C.J.;Han, M.B.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.3
    • /
    • pp.30-41
    • /
    • 1987
  • The geometrical shape of a plow bottom may be the most important factor affecting the performance of a plow for a given soil and operating conditions. There are various designs of the Jaenggi (Korean plow) available commercially, which may be different from each other and from the plow (Western plow) in respect to the shape and performance. This study was intended to investigate the geometrical characteristics of Jaenggi. The coordinate digitizer equipped with 3 potentiometers was designed and manufactured for measurement of the shape of curved plane of moldboard and share. The digitizer was connected to a microcomputer having the data acquisition system. This device was used to analyze the plow bottoms of 5 differently-made Jaenggis and one cylindrical plow. The results of the study are summarized as follows: 1. It was possible to measure easily and quickly the curved plane of plow bottom and to plot the view on three major plans using the coordinate digitizer electrically connected to a microcomputer system. 2. The shape of five Jaenggi bottoms analyzed could be characterized by the cutting angle having the range of $33-42^{\circ}$, the maximum share-lift angle of $41-50^{\circ}$, and the setting angle of moldboard wing of $46-70^{\circ}$. The most critical difference of the shape factors between the Jaenggi and the plow was found in the maximum share-lift angle, the former was more than twice as much as the latter. 3. The analysis of the shape of Jaenggi bottoms showed that the share projections on 3 major plans had a varied triangle, which was quite different from that of plow bottom. Especially, it was analyzed that the shape of furrow slice for the Jaenggi had a skewed rectangle, leaving a considerable height of the ridge at the furrow bottom. 4. The dihedral angle was similar range of $30-85^{\circ}$ for the all bodies investigated, but the directional angle was somewhat different from each other. The difference in directional angle was $5^{\circ}$ for the plow, $20^{\circ}$ for the Jaenggi A and $30^{\circ}$ for the Jaenggi B. 5. Area of the spherical representation region was 0.0328 for the plow, 0.1194 for the Jaenggi A and 0.1716 for the Jaenggi B. This may indicate that the plow came close to a working surface and the Jaenggi A and the Jaenggi B departed from a working surface to a somewhat greater extent.

  • PDF

Analysis of Variations in Mechanical Properties of Soil by Tillage Operations (경운작업에 의한 토양 역학적 특성의 변이 특성)

  • Park, J.G.;Lee, K.S.;Cho, S.C.;Noh, K.M.;Chung, S.O.;Chang, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.215-222
    • /
    • 2007
  • In the study, the cone index, the cohesion and the internal friction angle of soil were measured before and after tillage in order to suggest relative improvement in soil properties by comparing the two measured values before and after tillage. The tillage methods tested in the study were five combinations of plowing and rotovating; one plow tillage operation, one plow followed by one rotary, one plow followed by two rotary, one rotary without plow and two rotary without plow. The experiments were performed in a soil bin in Sunggyunkwan Univ. and in four selected test fields in Yeoju, Seodun-Dong, Suwon (especially, two different fields) and Chungju. In general, the internal friction angle and cohesion of soil increased with the increase of soil compaction. After applying the tillage operations, the internal friction angle reduced by 14 degree and the cohesion decreased up to about $2.2N/cm^2$ on the soil bin in comparison with those before tillage. The two values, however, reduced by 9 degree and up to about $1.0N/cm^2$ on the tested fields. The CIs for all the tillage operations on the soil bin and on 4 different test fields were decreased by 800 kPa in comparison with those before tillage. The best combination of tillage operations for decreasing the CIs of soil was one plow operation followed by one rotary. The CIs for one plow operation followed by two rotary were slightly higher than that for one plow operation followed by one rotary because one plow operation followed by two rotary crushed down the soil excessively, so that the porosity of soil decreased.

Computer-Aided Design of Plow Working Surfaces (플라우 작업 곡면의 컴퓨터 원용 설계)

  • Chung, C.J.;Park, J.S.;Woo, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 1992
  • This study was intended to develop the design program of the working surface of moldboard-plow by use of the computer-aided design. The mathematical model of the working surfaces of moldboard-plows by use of computer graphics was developed and plotted in two dimension on three major planes. The surfaces of moldboard-plows were represented with "B-spline surface fitting" by selecting the twenty-five three-dimensional data that could well describe the working surface of moldboard-plow. The shape of moldboard-plow on three major planes was drawn for varied design parameters. The representation of the mathematical model for the working surfaces of various types of moldboard-plows was manipulated by translation, rotation and scaling about arbitrary axes in space. By using three-dimensional graphics techique to describe moldboard-plows, it was capable of plotting the three-dimensional shape of moldboard-plow easily and quickly in comparison with the existing design methods that were difficult to grasp the shape of moldboard-plow as a whole. The design theories of moldboard plow and three-dimensional computer graphic technique were applied to find out the improved reversible Jaenggi bottom. It was resulted in the newly developed shape of Jaenggi which may be used for improving the performance compared to existing ones.

  • PDF

Effects of Tillage Methods on the Changes of Soil Physical Properties and Rice Yields (경운방법(耕耘方法)의 차이(差異)가 토양(土壤)의 물리성(物理性)과 수도생육(水稻生育)에 미치는 영향(影響))

  • Jo, In-Sang;Min, Kyeong-Beom;Kim, Lee-Yul;Im, Jeong-Nam;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.2
    • /
    • pp.189-193
    • /
    • 1985
  • A field experiment was conducted to find out the effects of tillage methods on the changes of soil physical properties and rice yields. Silty clay loam soil was treated with six kinds of different tillage methods, cultivator plow-rotary, rotary, tractor deep plow-rotary, subsoiling-rotary, chisel plow-rotary and no-tillage, and Jinju variety of rice was cultivated. The results were summarized as follows; 1. Working efficiency was highest at chisel plow and the efficiencies were decreased with the order of deep plow, subsoiling, rotary, and cultivator plow. 2. Deep plow and chisel plow were considered as the useful treatments of physical properties to 20 cm depth soil and subsoiling was effective to 40 cm depth soil. 3. Rice yields were decreased 4% by rotary and 11% by no-tillage compare to cultivator plow-rotary but the yields were increased 5% by deep plow, 4% by subsoiling and 3% by chisel plow. As the results of all the data, welting efficiency, soil physical properties and rice yields, tractor deep plow was recommendable tillage method for rice paddy soils.

  • PDF

Evaluation and Modification on the New Concept Plow

  • Shoji, Koichi;Namikawa, Kiyosi;Umeda, Mikio
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1026-1035
    • /
    • 1993
  • Further evaluation and modification were done on the new concepts plow (frontal plow), a plow which inverts the soil furrow without lateral displacement . First, kinematics of soil cutting section was analyzed and an experiment was conducted to report draft and power requirement. Second, function of main moldboards was examined and modification was made. As a result of the modification , force applied to the moldboard was reduced, but the furrow inversion became less stable.

  • PDF

The numerical investigation of tensile strength of coal model on the performance of coal plow using Particle Flow Code

  • Fu, Jinwei;Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi;Li, Tong
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.713-724
    • /
    • 2022
  • Effects of coal tensile strength and plow configuration on the coal fragmentation process was modeled by two-dimensional particles flow code (PFC2D). Three tensile strength values, 0.5, 1,5 and 3.5 MPa were considered in this numerical study. The cutters of plow penetrated in the coal for 4 mm at a rate of 0.016 m/s. According to the PFC manual, the local damping factor was 0.7. Three failure mechanism of coal during the fragmentation process by plow were modelled. The coal material beneath the cutters showed the elastic, plastic and fracturing behaviors in this analysis. In all the models, the plastic zone was fractured and some micro-cracks were induced but the elastic zone remained undamaged. It was observed that the tensile strength affected the failure mechanism of coal significantly and as it increased the extent of the fractured zone underneath the plow cutter decreased during the fragmentation process.

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

MEASUREMENT OF FIELD PERFORMANCE FOR TRACTOR

  • M. J. NahmGung;Park, C. H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.819-826
    • /
    • 2000
  • This study was performed to develop a measurement system of tractor field performance for plow and rotary operations. Measurement system for tractor consisted of torque sensors to measure torque of drive axles and PTO axle, speed sensors to measure rotational speed of drive axles and engine, microcomputer to control data logger, and data logger as I/O interface system. The measurement system was installed on four-wheel-drive tractor. Four-element full-bridge type strain gages were used for torque measurement of drive axles and optical encoders were used to measure speeds of drive axles and engine. Slip rings were mounted on the rotational axles. Signals from sensors were inputted to data logger that was controlled by microcomputer with parallel communication. Sensors were calibrated before the field tests. Regression equations were found on completion of the calibrations. The field experiment was performed at paddy fields and uplands. Rotary and plow were used when the tractor was operated in the field. Travelling speeds of the tractor were 1.9 km/h, 2.7 km/h, 3.7 km/h, 5.5 km/h, 8.2 km/h, and 11.8 km/h. Operating depths of implements were maintained approximately 20cm during the tests. Torque data of drive axles were different at each location during plow and rotary operations. Results showed that torque of rear axles were greater than those of front axles. Total torque were 6860 - 11064 Nm at the upland and 7360 - 14190 Nm at the paddy field for plow operations. It was found that torque at the paddy field were about 20% greater than those at the upland for plow operations. Torque data showed that rotary operations required less power than plow operation at the paddy field and the upland. Torque measurements at each axle for rotary operations were only 8 - 16% of plow operations in the upland and 15 - 20% in the paddy field.

  • PDF