• Title/Summary/Keyword: Platform

Search Result 11,934, Processing Time 0.038 seconds

A Study on the Natural Landscape System and Space Organization of Musudong Village's Yuhoidang Garden(Hageohwon) (무수동 유회당 원림(하거원(何去園))의 산수체계와 공간구성)

  • Shin, Sang-Sup;Kim, Hyun-Wuk;Kang, Hyun-Min
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.3
    • /
    • pp.106-115
    • /
    • 2011
  • This study, based on (edited in 18th century), analysed the landscape system and cultural landscape elements of Yuhoidang(Hageowon 何去園) Garden in Musu-dong, Daejeon, and the findings are as in the following. YuHoidang(Gwon Yijin 權以鎭) managed Hageowon Garden in Musu-dong, located on the southern branch of Mt. Bomun, to realize his utopia. The completion of Hageowon Garden was only possible due to his installation of a variety of facilities in family gravesite on the hill behind his house: Shimyoso(Samgeunjeongsa 三近精舍, in 1707), Naboji(納汚池, in 1713), Banhwanwon(in 1714) and expended exterior space(in 1727). With regard to the landscape system of the village, the main range of mountains consists of Mt. Daedun, Mt. Odae and Mt. Bomun. The main high mountain of the three is Mt. Bomun, where 'Blue Dragon' hill branches off on the east side(Eungbong), 'White Tiger' in the west(Cheongeun and Sajeong) and Ansan(inner mountain) in the south. The landscape system is featured by 'mountains in back and rivers in front'. The river in the south-west, with its source in Mt. Juryun is called as the 'Stream of outer perfect spot', while the 'Stream of inner perfect spot' rises from Eungbong, passing through the east part of the village into the south-western direction. Banhwanwon Garden(盤桓園) was created with the stream in the east and natural bedrocks, and its landscape elements includes Naboji, Hwalsudam, Gosudae, Sumi Waterfall, Dogyeong(path of peach trees), Odeeokdae(platform with persimmon trees), Maeryong(Japanese apricot tree), springs and observatories. An expanded version of Banhwanwon was Hageowon garden, where a series of 'water-trees-stone' including streams, four ponds, five observation platforms, three bamboo forests and Chukgyeongwon(縮景園) of an artificial hill gives the origin forest a scenic atmosphere. When it comes to semantics landscape elements, there are (1) Yuhoidang to cherish the memory of a deceased parents, (2) Naboji for family unification, (3) Gosudae to keep fidelity, (4) Odeokdae to collect virtue and wisdom, (5) Sumi Waterfall to aspire to be a man of noble character, (6) Yocheondae for auspicious life, (7) Sumanheon and Gigungjae to be in pursuit of hermitic life, (8) Hwalsudam for development of family and study, (9) Mongjeong to repay favor of ancestors, (10) Seokgasan, a symbol of secluded life, (11) Hageowon to enjoy guarding graves in retired life. The spatial composition of Hageowon was realized through (1) Yuhoidang's inside gardens(Naboji, Jucheondang, Odeokdae, Dogyeong, Back yard garden and others) (2) Sumanheon(收漫軒) Byeolup or Yuhoidang's back yard gardens (Seokyeonji, Yocheondae, Sumanheon, Baegyeongdae, Amseokwon and others) (3) Chukgyeongwon of the artificial hill(which is also the east garden of Sumanheon, being composed of Hwalsudam, Sumi Waterfall and Gasan or 12 mountaintops) (4) the scenic spots for unifying Confucianism, Buddhism and Taoism are Cemetry garden in the back hill of the village, the temple of Yeogyeongam, Sansinkak(ancestral ritual place of folk religion) and Geoeopjae(family school). On top of that, Chagyeongwon Garden(借景園) commands a panoramic distant view of nature's changing beauty through the seasons.

School Experiences and the Next Gate Path : An analysis of Univ. Student activity log (대학생의 학창경험이 사회 진출에 미치는 영향: 대학생활 활동 로그분석을 중심으로)

  • YI, EUNJU;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.149-171
    • /
    • 2020
  • The period at university is to make decision about getting an actual job. As our society develops rapidly and highly, jobs are diversified, subdivided, and specialized, and students' job preparation period is also getting longer and longer. This study analyzed the log data of college students to see how the various activities that college students experience inside and outside of school might have influences on employment. For this experiment, students' various activities were systematically classified, recorded as an activity data and were divided into six core competencies (Job reinforcement competency, Leadership & teamwork competency, Globalization competency, Organizational commitment competency, Job exploration competency, and Autonomous implementation competency). The effect of the six competency levels on the employment status (employed group, unemployed group) was analyzed. As a result of the analysis, it was confirmed that the difference in level between the employed group and the unemployed group was significant for all of the six competencies, so it was possible to infer that the activities at the school are significant for employment. Next, in order to analyze the impact of the six competencies on the qualitative performance of employment, we had ANOVA analysis after dividing the each competency level into 2 groups (low and high group), and creating 6 groups by the range of first annual salary. Students with high levels of globalization capability, job search capability, and autonomous implementation capability were also found to belong to a higher annual salary group. The theoretical contributions of this study are as follows. First, it connects the competencies that can be extracted from the school experience with the competencies in the Human Resource Management field and adds job search competencies and autonomous implementation competencies which are required for university students to have their own successful career & life. Second, we have conducted this analysis with the competency data measured form actual activity and result data collected from the interview and research. Third, it analyzed not only quantitative performance (employment rate) but also qualitative performance (annual salary level). The practical use of this study is as follows. First, it can be a guide when establishing career development plans for college students. It is necessary to prepare for a job that can express one's strengths based on an analysis of the world of work and job, rather than having a no-strategy, unbalanced, or accumulating excessive specifications competition. Second, the person in charge of experience design for college students, at an organizations such as schools, businesses, local governments, and governments, can refer to the six competencies suggested in this study to for the user-useful experiences design that may motivate more participation. By doing so, one event may bring mutual benefits for both event designers and students. Third, in the era of digital transformation, the government's policy manager who envisions the balanced development of the country can make a policy in the direction of achieving the curiosity and energy of college students together with the balanced development of the country. A lot of manpower is required to start up novel platform services that have not existed before or to digitize existing analog products, services and corporate culture. The activities of current digital-generation-college-students are not only catalysts in all industries, but also for very benefit and necessary for college students by themselves for their own successful career development.

A Study on the Characteristics of Enterprise R&D Capabilities Using Data Mining (데이터마이닝을 활용한 기업 R&D역량 특성에 관한 탐색 연구)

  • Kim, Sang-Gook;Lim, Jung-Sun;Park, Wan
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • As the global business environment changes, uncertainties in technology development and market needs increase, and competition among companies intensifies, interests and demands for R&D activities of individual companies are increasing. In order to cope with these environmental changes, R&D companies are strengthening R&D investment as one of the means to enhance the qualitative competitiveness of R&D while paying more attention to facility investment. As a result, facilities or R&D investment elements are inevitably a burden for R&D companies to bear future uncertainties. It is true that the management strategy of increasing investment in R&D as a means of enhancing R&D capability is highly uncertain in terms of corporate performance. In this study, the structural factors that influence the R&D capabilities of companies are explored in terms of technology management capabilities, R&D capabilities, and corporate classification attributes by utilizing data mining techniques, and the characteristics these individual factors present according to the level of R&D capabilities are analyzed. This study also showed cluster analysis and experimental results based on evidence data for all domestic R&D companies, and is expected to provide important implications for corporate management strategies to enhance R&D capabilities of individual companies. For each of the three viewpoints, detailed evaluation indexes were composed of 7, 2, and 4, respectively, to quantitatively measure individual levels in the corresponding area. In the case of technology management capability and R&D capability, the sub-item evaluation indexes that are being used by current domestic technology evaluation agencies were referenced, and the final detailed evaluation index was newly constructed in consideration of whether data could be obtained quantitatively. In the case of corporate classification attributes, the most basic corporate classification profile information is considered. In particular, in order to grasp the homogeneity of the R&D competency level, a comprehensive score for each company was given using detailed evaluation indicators of technology management capability and R&D capability, and the competency level was classified into five grades and compared with the cluster analysis results. In order to give the meaning according to the comparative evaluation between the analyzed cluster and the competency level grade, the clusters with high and low trends in R&D competency level were searched for each cluster. Afterwards, characteristics according to detailed evaluation indicators were analyzed in the cluster. Through this method of conducting research, two groups with high R&D competency and one with low level of R&D competency were analyzed, and the remaining two clusters were similar with almost high incidence. As a result, in this study, individual characteristics according to detailed evaluation indexes were analyzed for two clusters with high competency level and one cluster with low competency level. The implications of the results of this study are that the faster the replacement cycle of professional managers who can effectively respond to changes in technology and market demand, the more likely they will contribute to enhancing R&D capabilities. In the case of a private company, it is necessary to increase the intensity of input of R&D capabilities by enhancing the sense of belonging of R&D personnel to the company through conversion to a corporate company, and to provide the accuracy of responsibility and authority through the organization of the team unit. Since the number of technical commercialization achievements and technology certifications are occurring both in the case of contributing to capacity improvement and in case of not, it was confirmed that there is a limit in reviewing it as an important factor for enhancing R&D capacity from the perspective of management. Lastly, the experience of utility model filing was identified as a factor that has an important influence on R&D capability, and it was confirmed the need to provide motivation to encourage utility model filings in order to enhance R&D capability. As such, the results of this study are expected to provide important implications for corporate management strategies to enhance individual companies' R&D capabilities.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.