• 제목/요약/키워드: Plate-fin heat exchanger

검색결과 75건 처리시간 0.025초

평판-휜 열교환기의 열-수력학적 성능에 대한 고속 바이패스 영향의 수치적 연구 (NUMERICAL STUDY OF THE HIGH-SPEED BYPASS EFFECT ON THE AERO-THERMAL PERFORMANCE OF A PLATE-FIN TYPE HEAT EXCHANGER)

  • 이준석;김민성;하만영;민준기
    • 한국전산유체공학회지
    • /
    • 제22권1호
    • /
    • pp.67-80
    • /
    • 2017
  • The high-speed bypass effect on the heat exchanger performance has been investigated numerically. The plate-fin type heat exchanger was modeled using two-dimensional porous approximation for the fin region. Governing equations of mass, momentum, and energy equations for compressible turbulent flow were solved using ideal-gas assumption for the air flow. Various bypass-channel height were considered for Mach numbers ranging 0.25-0.65. Due to the existence of the fin in the bypass channel, the main flow tends to turn into the core region of the channel, which results in the distorted velocity profile downstream of the fin region. The boundary layer thickness, displacement thickness, and the momentum thickness showed the variation of mass flow through the fin region. The mass flow variation along the fin region was also shown for various bypass heights and Mach numbers. The volumetric entropy generation was used to assess the loss mechanism inside the bypass duct and the fin region. Finally, the correlations of the friction factor and the Colburn j-factor are summarized.

미소열교환기법에 의한 밀집형 열교환기의 성능 계산 : 핀을 통한 튜브간 전도의 영향 (Computation of Compact Heat Exchanger Performance by the Heat Exchangelet Method : Effect of Tube-to-tube Conduction along the Fin)

  • 성시경;송태호;최영철
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.494-501
    • /
    • 2000
  • Effectiveness of a 3-pass plate finned-tube heat exchanger is calculated using heat exchangelet method by changing the shape of fin and the arrangement of tubes. The alternative refrigerant R134a is taken in this study. Conduction between neighboring tubes along the fin is taken into account in addition to convection between the fin and the surrounding air. Governing equations are obtained by using energy balance in a small control volume containing a tube and fins. They are numerically solved following the tube. Effect of tube-to-tube conduction is investigated in single-phase and two-phase flows with various fin shapes and arrangements of tubes. Improvement of effectiveness by fin perforation is studied too. The results shows that perforating fins, increasing the number of tubes, and increasing the distance between neighboring tubes at the same fin area enhance the effectiveness.

  • PDF

평판 핀 열교환기의 성능 향상을 위한 변형된 평판 핀에 대한 해석 (Analysis of a Modified Plate Fin for Enhanced Performance of a Plate Fin Heat Exchanger)

  • 김윤하;강형석
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.84-91
    • /
    • 2001
  • Comparison between performance of a plate fin and that of a modified plate fin is investigated as a function of the position, the non-dimensional width and height of wings as well as the non-dimensional fin length using a two-dimensional separation of variables method. The ratio of the incremental rate of heat loss to that of the area of a modified plate fin is also presented as a function of the height of wings. The modified plate fin is made by attaching the wings to upper and lower sides of a plate fin. One of the results shows that performance of a modified plate fin is more improved as the wings approach left (higher) thermal reservoir.

  • PDF

핀관 열교환기에서 확관율이 접촉열전달계수에 미치는 영향 (Effect of Expansion Ratio on Contact Heat Transfer Coefficient in Fin-Tube Heat Exchanger)

  • 이상무;박병덕
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.45-50
    • /
    • 2012
  • The plate fin and tube type of heat exchanger is widely used in air conditioner, and the heat exchanger is assembled by the mechanical expansion of copper tubes and fastening the aluminum fin. The objective of the present study is to investigate how the mechanical expansion of copper tube affects on the heat transfer performance of a plate fin and tube type heat exchanger. This study has been performed by experimental and numerical methods. The numerical and experimental results show that the tube expansion ratio has a influence on the heat transfer performance. Within the tested expansion ratio, the contact pressure shows the peak value and it decreases as the expansion ratio increases. Air-side heat transfer coefficient increases until the expansion ratio reaches 1.23, and then decreases with the similar pattern to the contact pressure. Also, contact heat transfer coefficient shows the maximum when the contact pressure is highest as well as the air-side heat transfer coefficient.

플레이트-휜형 흡수기의 흡수성능에 대한 연구 (The Study on Absorption Performance of a Plate-Fin Type Absorber)

  • 강인석;김남진;김종보
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.557-563
    • /
    • 2001
  • Small capacity gas absorption systems for cooling and heating have been favorably considered to reduce the seasonal imbalance of electrical loads and LNG consumption recently. A multifunctional plate-fin heat exchanger was adopted as an absorber and the performance was tested and analyzed to reduce the size and weight of the absorption heat pump. The test was performed using breadboard type ammonia absorption machine. The performance was compared with the plate type absorber and there was little difference in heat and mass transfer characteristics. The heat and mass transfer performance was a function of poor solution and vapor flow rates and the mass transfer was dependent on vapor flow rate more than heat transfer.

  • PDF

Plate fin-oval tube 열교환기에서 와류발생체에 의한 fin 표면에서의 국소 열전달 특성 (Local Heat Transfer Characteristics on Fin Surface of Plate Fin - Oval Tube with Delta Wing Vortex Generators)

  • 신석원;정인기;김수연
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2390-2395
    • /
    • 2007
  • The present research was experimentally performed to analyze the effect of delta-wing vortex generators(DWVG) on the heat transfer of fin surface of the plate fin-oval tube. The local heat transfer coefficient of the fin surface for four kinds of DWVG's arrangement was measured by the naphthalene sublimation technique for Reynolds numbers ranging from 2000 to 3200. The results showed that the heat transfer of the plate fin-oval tube can be significantly enhanced by DWVG for relatively low Reynolds numbers.

  • PDF

휜-관 열교환기의 착상 성능 해석 (Analysis of Frosting Performance of a Fin-Tube Heat Exchanger)

  • 양동근;이관수
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.965-973
    • /
    • 2005
  • This paper proposes a mathematical model for predicting the frosting performance on a fin-tube heat exchanger. The model consists of empirical correlations of average heat transfer coefficients for the plate and tube surfaces and a diffusion equation inside the frost layer. The numerical results are compared with experimental data for the frost thickness, the frosting rate and the heat transfer rate to validate the proposed model. The results are in good agreement with the experimental data, and show that this model can be applied to predict frosting performance of common fin-tube heat exchanger.

열교환기 표면에서의 서리층 성장에 대한 휜 피치와 배열의 영향 (Effects of fin pitch and array of the frost laver growth on extended surface of a heat exchanger)

  • 양동근;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1461-1466
    • /
    • 2003
  • This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The characteristics of the frost formation on staggered fin array are somewhat different from those of in-line array. The frost layer at the first fin of the in-line array grows rapidly, compared to second fin, whereas the difference of the frost layer growth between the fins of the staggered array is small. For fin pitch below 10 mm, the frost layer growth of second fin in the staggered array is affected by that of first fin. The frost layer growth and heat transfer of single fin deteriorate with decreasing fin pitch regardless of fin array, however, the thermal performance of a heat exchanger, considering increase of heat surface area, becomes better.

  • PDF

열교환기 표면에서의 서리층 성장에 대한 휜 피치와 배열의 영향 (Effects of Fin Pitch and Array on the Frost Layer Growth on the Extended Surface of a Heat Exchanger)

  • 양동근;이관수
    • 설비공학논문집
    • /
    • 제15권9호
    • /
    • pp.711-717
    • /
    • 2003
  • This paper presents the effects of the fin array and pitch on the frost layer growth of a heat exchanger. The numerical results are compared with experimental data of a cold plate to validate the present model, and agree well with experimental data within a maximum error of 8%. The frost behaviors of the staggered fin array are somewhat different from those of in-line array. The frost layer formed on the first fin of the in-line array grows rapidly, compared to second fin, whereas the difference of the frost layer growth between the fins of the staggered array is small. For fin pitch below 10 m, the frost layer growth of second fin in the staggered array is affected by that of first fin. The thickness of the frost layer and heat transfer of single fin are reduced with decreasing fin pitch regardless of fin array. However, the thermal performance of a heat exchanger is enhanced due to the increase of heat transfer surface area.

평판 핀 튜브 열교환기의 공기측 강제대류 열전달계수에 대한 실험 및 수치계산 (Experimental Measurement and Numerical Computation on the Air-Side Forced Convective Heat Tranfer Coefficient in Plate Fin-Tube Exchangers)

  • 윤영환;팽진기;윤건식
    • 설비공학논문집
    • /
    • 제18권9호
    • /
    • pp.729-737
    • /
    • 2006
  • Air-side forced convective heat transfer of a plate fin-tube heat exchanger is investigated by experimental measurement and numerical computation. The heat exchanger consists of staggered arrangement of refrigerant pipes of 10.2 m diameter and the pitch of fins is 3.5 m. In the experimental study, the forced convective heat transfer is measured at Reynolds number of 1082, 1397, 1486, 1591 and 1649 based on diameter of refrigerant piping and mean velocity. Average Nusselt number for the convective heat transfer coefficient is also computed for the same Reynolds number by commercial software of STAR-CD with standard $k-{\varepsilon}$ turbulent model. It is found that the relative errors of average Nusselt numbers between experimental and numerical data are less than 6 percentage in Reynolds number of $1082{\sim}1649$. The errors between experiment and other correlations are ranged from 7% to 32.4%. But the correlation of Kim at al is closest to the experimental data within 7% of the relative error.