• Title/Summary/Keyword: Plate-Type Structure

Search Result 422, Processing Time 0.03 seconds

Structural Damping Ratio of Steel Plate Concrete(SC) Shear Wall at the Low Stress Level Identified by Vibration Test (진동시험을 통한 강판콘크리트(SC) 전단벽의 저응력수준에서의 구조 감쇠비 규명)

  • Cho, Sung Gook;So, Gihwan;Kim, Doo Kie;Han, Sang Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.255-264
    • /
    • 2015
  • Steel plate concrete (SC) structure has been developed as a new structural type. Rational damping value shall be determined for the seismic design of SC structure. This study evaluated damping ratio of SC structure through experiments. For the study, a SC shear wall specimen was constructed and dynamically tested on the shaking table. Acceleration time history responses measured from testing were converted to the transfer functions and analyzed by using experimental modal analysis technique. The structural damping ratio of the specimen was identified as 4% to critical. Considering the shaking table test was performed at the excitation level corresponding to the low stress level of the specimen, 4% could be suggested as a structural damping for design of SC structure for operating basis earthquake.

Efficient Design of Plate Spring for Improving Performance of Sound Wave Vibration Massage Chair (음파진동 안마의자제품의 성능향상을 위한 판스프링의 효율적 설계)

  • Kim, Chang-Gyum;Park, Soo-Yong;Jo, Eun-Hyeon;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.1-7
    • /
    • 2019
  • The customer of massage chair is expanding day by day from middle age to all ages. In 2018, the market size was 700 billion KRW, an increase of 30 times over 10 years. However, most related SMEs suffer from excessive competition by the market monopoly of some major companies. In this situation, in order for a related company to survive, it is necessary to steadily research and develop new products. Founded in 2009, company L produces massage chairs for health and relaxation of customers. L's products use a sound wave vibration module that is favorable for human body, unlike other products that use vibration motor type. However, frequent breakdowns of massage chair due to the vulnerability of plate (leaf) springs, which play an important role in sound wave vibration modules, made sap its competitiveness. In this paper, we propose a method to design desirable plate spring structure by sequentially experimenting with five different plate springs. The results of this study are expected to contribute to improve the quality of plate spring and the reliability of sound wave vibration module. In the future, it is necessary to find a way to use it in the development of foot massage or scalp management device as well as continuous research to find optimal plate spring structure through various analysis.

A Study on the Development of Force Limiting Devices of Folded Plate Type (절판형 응력제한 기구의 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.571-579
    • /
    • 2014
  • The steel braces are used to control the lateral drift of high rise buildings. The braces are designed as tensile members since the braces consisted of slender member can not resist compressive loads by elastic buckling. To resolve this problem, a lot of research were performed to develop the non-buckling member. The force limiting device (FLD.) is one of them. The purpose of this study is the development of FLD. to prevent a elastic buckling for a slender member. The folded plate type is proposed to induce the yielding before occurring elastic buckling. In this study, member test and FEM analysis for proposed type were performed. Further, It is verified that the structure with FLD member is stable by high energy absorption. The proposed folded plate type FLD could be effective to preserve the compressive member from the elastic buckling.

Design of A Dual-resonance PIFA Using U-Type Slot (U-형 슬랏을 이용한 이중 공진 PIFA 설계)

  • Kim, Yoon-Ho;Rhee, Joong-Geun;Kim, Jung-Hun;Jang, Tae-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.77-83
    • /
    • 2010
  • This paper presents the dual resonance PIFA(Planar Inverted F-Antenna) which satisfies the requirements of the 802.11n standard at both 2.4 GHz and 5 GHz frequency bands. Patch for 2.4 GHz and U-Type slot for 5 GHz were used for dual resonance, respectively. In this paper, the characteristics of an antenna were investigated by varying locations of short plate and feed point, the width of the short plate, the thickness and the location of U-Type slot. To investigate the characteristics of the PIFA, HFSS(High Frequency Structure Simulation) for the simulation was used. And the measurement results of a fabricated PIFA were compared with the simulated ones. The measurement and simulation results show that good dual resonance characteristics as the thickness of U-type slot decreases and when the location of U-type slot is far from the feed point.

Characteristic of Vertical Stress in Sandy Soil according to Loading Types (재하방법에 따른 사질토 지반의 연직응력 특성)

  • Nam, Hyo-Seok;Lee, Sang-Ho;Kwon, Moo-Nam
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.83-90
    • /
    • 2009
  • This study was carried out to evaluate the vertical stress properties in sandy soil according to changes of loading type in soil bin compacted three layers. The following conclusions and comparisons have been made based on careful analysis from theoretical and experimental methods. : When sandy soil subjected to cycle-loading, compression of foundation and diffusion of vertical stress increment(${\Delta}{\sigma}_2$) were influenced by magnitude of loading plate. When sandy soil subjected to reloading after removing of pre-loading, the distribution of ${\Delta}{\sigma}_2$ depth at one time of loading plate width was different from its distribution at more deep point cause of load hysteresis, so in case of design of structure, the effect of ${\Delta}{\sigma}_2$ as depth must be considered. The increment of vertical stress will be different as loading condition and foundation depth, the loading condition must be considered in case of structure design.

A Study on the Rolling Friction Characteristics of Large Scale Roller Shoe for Bridge Supporter (교량받침용 대형 Roller Shoe의 구름마찰특성에 관한 연구)

  • 김영득;김재철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.660-663
    • /
    • 2001
  • There is a mechanical device between the superstructure and substructure of a bridge, which transmit vertical load of superstructure to the substructure and absorb horizontal displacement of super structure due to thermal, dynamic, load, etc. In order to meet two requirements at once, the structure of roller between plates is widely used, and this roller between plates is widely used, and this roller shoe system is known to have smaller horizontal movement resistance than any other type of bridge shoe. In this study, rolling friction resistance characteristics of roller-plate friction system is investigated according to roller dimension, vertical load, hardness and roughness of roller and plate. On the base of the results, the rolling friction resistance of large scale roller shoe is evaluated using model experiment.

  • PDF

Impact of Measurement Temperature on Frequency-Based Damage Detection Method (계측온도조건이 고유진동수 기반 손상검색기법에 미치는 영향)

  • 김정태;윤정방;이진학;류연선;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.535-540
    • /
    • 2003
  • The objective of this paper is to assess the variability of modal properties caused by temperature effects and to adjust modal data used for frequency-based damage detection in plate-girder bridges. First, experiments on model plate-girder bridges are described. Next, the relationship between temperature and natural frequencies is assessed and a set of empirical frequency-correction formula are analyzed for the test structure. Finally, a frequency-based method is used to locate and estimate severity of damage in the test structure using experimental modal data which are adjusted by the frequency-correction formula. Here, local damage in beam-type structures is detected by using measured frequencies and analytical mode shapes.

  • PDF

Optimization for the Internal Structure of a Recuperator with Offset Strip Fins (오프셋 스트립 휜을 가지는 리큐퍼레이터의 내부 형상 최적화)

  • Do, Kyu-Hyung;Han, Yong-Shik;Choi, Byung-Il;Kim, Myung-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1178-1185
    • /
    • 2011
  • In the present study, a recuperator is suggested to improve the thermal efficiency of a micro gas turbine. Primary design parameters of the recuperator are determined from the ideal cycle analysis. The counter flow plate-fin heat exchanger with offset strip fins is chosen as the type of the recuperator. In order to satisfy the design constraints which are the minimum effectiveness and the maximum pressure drop, the optimization for the internal structure of the recuperator is performed with varying the fin spacing and the fin height of offset strip fins. Also the effects of the thermal conductivity of fins and separation plates and the longitudinal heat conduction on the thermal performance of the recuperator are investigated.

Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant (원전 금속단열재의 구조 건전성 강화를 위한 설계 방안)

  • Lee, Sung Myung;Eo, Min Hun;Kim, Seung Hyun;Jang, Kye Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

Numerical study on effect of integrity reinforcement on punching shear of flat plate

  • Ahsan, Raquib;Zahura, Fatema T.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Reinforced concrete flat plates consist of slabs supported directly on columns. The absence of beams makes these systems attractive due to advantages such as economical formwork, shorter construction time, less total building height with more clear space and architectural flexibility. Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. To analyze the flat plate behavior under punching shear, twelve finite element models of flat plate on a column with different parameters have been developed and verified with experimental results. The maximum range of variation of punching stress, obtained numerically, is within 10% of the experimental results. Additional finite element models have been developed to analyze the influence of integrity reinforcement, clear cover and column reinforcement. Variation of clear cover influences the punching capacity of flat plate. Proposed finite element model can be a substitute to mechanical model to understand the influence of clear cover. Variation of slab thickness along with column reinforcement has noteworthy impact on punching capacity. From the study it has been noted that integrity reinforcement can increase the punching capacity as much as 19 percent in terms of force and 101 percent in terms of deformation.