• Title/Summary/Keyword: Plate nozzle

Search Result 266, Processing Time 0.025 seconds

A Study on The Flow Characteristics according to Changes of Rod Shape on Impinging Jet (충돌 제트에서 Rod 형상 변화에 따른 주변 유동 특성연구)

  • Son Seung-Woo;Lee Sang-Bum;;Song Min-Geun;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.525-528
    • /
    • 2002
  • The objective of this study is to investigate characteristics of flow by the Rod shape and the choice of the turbulent intensity enhancement section. The Rod was setup vertically to the way of a nozzle exit flow and nozzle diameter is 17mm. Rod height is 5mm and its shapes are square, triangle, and circle. Characteristics of fluid such as velocity vector distribution, kinetic energy, turbulent intensity, and etc. were visualized, observed, and considered at 3 kinds of Re No. such as 2000, 3000, and 4000. The characteristics of flow field were investigated in each case of the distance rate from the nozzle exit to impinging plate(H/B=8, 10). The temperature of water is $20^{\circ}E$ and the measurement region divided by 3 sections(I, II, III). The nozzle diameter is 17mm. As the experimental result by PIV measurement, scale of the vector profile showed a tendency to an unbalance parabola distribution as increasing of the Re No. When the impinging plates such as square, triangle, and circle shape are installed respectively in front of the flow accelerated, rod shape of the highest velocity vector is circle shape and rod shape of the highest turbulent Intensity is square shape.

  • PDF

Effects of Combustion Characteristics of the Burners for Non-Oxidizing Direct Fired Furnaces on the Oxidization of the Surface of Steel Plate (무산화 직화로 버너의 연소특성이 강재표면의 산화에 미치는 영향)

  • Park, Heung Soo;Riu, Kap Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.330-341
    • /
    • 1999
  • An experimental study for the two types of burners used in the non-oxidizing direct fired furnaces of the heat treatment process for the cold rolled plate has been carried out to investigate the combustion characteristics and the oxidization of the surface of steel plate. A steep temperature gradient and entrainment of residual oxygen were found near the heating surface in the flame of the nozzle mixing burner which has strong swirl velocity component. It was concluded that the elimination of the residual oxygen and the increase of the temperature of combustion gas on the heating surface are needed to enhance the performance of the burners for application to the non-oxidizing direct fired furnaces.

Comparison of Unconfined and Confined Micro-scale Impinging Jets

  • Choo, Kyo-Sung;Youn, Young-Jik;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2210-2213
    • /
    • 2008
  • In the present study, effects of degree of confinement on heat transfer characteristics of a micro-scale slot jet impinging on a heated flat plate are experimentally investigated. The effects of Reynolds numbers (Re = $1000{\sim}5000$), lateral distances (x/B = $1{\sim}10$), nozzle-to-plate spacings (Z/B = $1{\sim}20$), and degree of confinement ($B_c$/B = 3, 48) on the Nusselt number are considered. The results show that the effects of the degree of confinement on the cooling performance of the micro-scale impinging slot jet are significant at lower nozzle-to-plate spacings and higher Reynolds numbers. In addition, it is shown that the cooling performance of the micro-scale unconfined slot impinging jet is 200% higher than that of the micro-scale confined slot impinging jet.

  • PDF

An experimental study of heat transfer in a submerged water jet (서브머지드 단일수분류의 열전달에 관한 실험적 연구)

  • Ohm, Ki-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.101-110
    • /
    • 2005
  • An experimental study of heat transfer of submerged water jet impinging normally on a flat plate is presented. Heat transfer measurements obtained with Reverse cone type nozzle(Rcone) were compared to those obtained with Cone type nozzle(Cone) and Square edged type nozzle(Vert) of the same diameter(D=8mm) for different jet velocities in the range of $3{\sim}7m/s(Re_D=30000{\sim}70000)$ and various nozzle-to target spacings($H/D=2{\sim}10$). The local Nusselt number profiles exhibited a sharp drop for $r/D{\leq}0.5$ and 2nd, 3rd peaks revealed at r/D=2, 3 respectively, followed by a slower decrease there after. The peaks were weakened with increasing the nozzle-to target spacing and decreasing the jet velocity. The stagnation Nusselt number of the Reverse cone type nozzle was larger than those of the other two nozzles for H/D=2. 10, but Cone type nozzle had the highest value for $H/D=4{\sim}8$. Also average Nusselt number of the Reverse cone type nozzle was higher than those of the other two nozzles at $H/D=2{\sim}10$, except for $V_o=7ms$ of H/D=6.

Heat Transfer Enhancement by the Perforated Plate of Round Impinging Air Jets (원형충돌제트에서 다공질판에 의한 열전달 향상)

  • Kim, Yun-Taek;Lee, Yeong-Min;Won, Se-Yeol;Lee, Dae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.475-484
    • /
    • 2001
  • The purpose of this study is to investigate the heat transfer augmentation using the perforated plate placed in front of a target plate in an axisymmetric impinging air jet system. The new liquid crystal technique using neural networks with median filtering is used to determine the Nusselt number distributions on the target surface. The experiments were made for the jet Reynolds number (Re) 23,000. The effects of the pitch-to-diameter (p/d1) from 1.5 to 2.5 in the perforated plate, the hole diameter on perforated plate (d1) from 4㎜ to 12㎜, the perforated plate to target surface distance (z/d1) from 1 to 3, and the nozzle-to-target surface distance (L/d) from 2 to 10 on the heat transfer characteristics were experimentally investigated. It was found that when the perforated plate was located between the nozzle exit and the target plate, the average heat transfer rate at the stagnation region corresponding to r/d$\leq$1.0 was increased up to the maximum 2.3 times compared to the case without the perforated plate.

Control of Impinging Jet Heat Transfer Using Mesh Screens (메쉬 스크린을 이용한 충돌제트 열전달 제어에 관한 연구)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.722-730
    • /
    • 2001
  • The local heat transfer of an axisymmetric submerged air jet impinging on a heated flat plate is investigated experimentally with the variation of mesh-screen solidity. The screen installed in front of the nozzle exit modifies the flow structure and local heat transfer characteristics. The mean velocity and turbulence intensity profiles of streamwise velocity component are measured using a hot-wire anemometry. The temperature distribution on the heated flat surface is measured with thermocouples. The smoke-wire flow visualization technique was employed to understand the near-field flow structure qualitatively for different mesh screens. Large-scale toroidal vortices and high turbulence intensity enhance the heat transfer rate in the stagnation region. For a higher solidity, turbulence intensity become higher which increases the local heat transfer at small nozzle-to-plate spacings such as L/D<6. The local and average Nusselt numbers of impinging jet from the $\sigma$(sub)s=0.83 screen at L/D=2 are about 5.6∼7.5% and 7.1% larger than those for the case of no screen, respectively. For the nozzle-to-plate spacings larger than 6, however, the turbulence intensities for all tested screens approach to an asymptotic curve and the mean velocity along the jet centerline decreases monotonically. As the nozzle-to-plat spacing increases for high solidity screens, the heat transfer rate decreases due to the reduction in turbulence intensity and jet momentum.

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.

Establishment of Manufacturing Conditions for Magnesium Alloy Thin Plate using Melt Drag Method (용융드래그방법을 이용한 마그네슘 합금 박판의 제조조건 확립)

  • Han, Chang-Suk;Kwon, Yong-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.511-518
    • /
    • 2021
  • An investigation is performed to clarify the manufacturing conditions of pure magnesium and AZ31 magnesium alloy thin plate using the melt drag method. By the melt drag method, suitable for magnesium molten metal, pure magnesium can be produced as a continuous thin plate with a thickness of 1.4 mm to 2.4 mm in the range of 5 m/min to 20 m/min of roll speed, and the width of the thin plate to the nozzle outlet width. AZ31 magnesium alloy is able to produce a continuous sheet of thickness in the range of 5 m/min to 30 m/min in roll circumferential speed, with a thickness of 0.6 mm to 1.6 mm and a width of the sheet matching the nozzle outlet width. In the magnesium melt drag method, the faster the circumferential speed of the roll, the shorter the contact time between the molten metal and the roll, and it is found that the thickness of the produced thin plate becomes thinner. The effect of the circumferential roll speed on the thickness of the thin plate is evident in the low roll circumferential region, where the circumferential speed is 30 m/min or less. The AZ31 thin plate manufactured by the melt drag method has a finer grain size as the thickness of the thin plate decreases, but it is currently judged that this is not the effect of cooling by the roll.

The Effect of Nozzle Height on Heat Transfer of a Hot Steel Plate Cooled by an Impinging Water Jet (충돌수분류에 냉각되는 고온 강판의 열전달에 있어 노즐높이의 영향에 대한 연구)

  • Lee, Pil-Jong;Choi, Hae-Won;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.668-676
    • /
    • 2003
  • The effect of nozzle height on heat transfer of a hot steel plate cooled by an impinging liquid jet is not well understood. Previous studies have been based on the dimensionless parameter z/d. To test the validity of this dimensionless parameter and to investigate gravitational effects on the jet, stagnation velocity of an impinging liquid jet were measured and the cooling experiments of a hot steel plate were conducted for z/d from 6.7 to 75, and an inverse heat conduction method is applied for the quantitative comparison. Also, the critical instability point of a liquid jet was examined over a range of flow rates. The experimental velocity data for the liquid jet were well correlated with the dimensionless number 1/F $r_{z}$$^2$based on distance. It was thought that the z/d parameter was not valid for heat transfer to an impinging liquid jet under gravitational forces. In the cooling experiments, heat transfer was independent of z when 1/F $r_{z}$$^2$< 0.187(z/d = 6.7). However, it was found that the heat transfer quantity for 1/F $r_{z}$$^2$=0.523(z/d = 70) is larger 11% than that in the region for 1/F $r_{z}$$^2$=0.187. The discrepancy between these results and previous research is likely due to the instability of liquid jet.uid jet.

A Study on the Characteristic of Impinging Pressure Distribution in the Three Dimensional Impinging Water Jet (삼차원(三次元) 수분류(水噴流)의 충돌(衝突) 압력(壓力) 분포(分布) 특성(特性)에 관(關)한 연구(硏究))

  • Lee, J.S.;Choi, K.K.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.217-228
    • /
    • 1998
  • The purpose of this research is to investigate the characteristics of static and total pressure distribution in the upward free water jet system impinged on a downward flat plate. The rectangular nozzle was used and its contraction and aspect ratio was five and about seven respectively. Experimental conditions considered were jet velocity, distance between nozzle and flat plate, height of supplementary water. It was founded that pressure distribution on the flat plate had the Gaussian curve when the pressure at stagnation point and impinging half width were chosen as the scaling parameters. The maximum pressure was shown at the stagnation point. The central impingement velocity decreased with the increment of distance between nozzle and flat plate, and its slop of decay was similar to that of chracteristics decay region in the three-dimensional free jet.

  • PDF