• Title/Summary/Keyword: Plate nozzle

Search Result 266, Processing Time 0.026 seconds

An Experimental Study on Flow Characteristics of Impinging Jet (1) (충돌제트의 유동특성에 관한 실험적 연구(1))

  • 김동균;김정환;배석태;김시범;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.37-42
    • /
    • 2000
  • The flow characteristics of impinging jet flow are affected greatly by nozzle plate to distances. An sharp edge nozzle was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet plate can be changed largely by the control of main flow. In the parent study, we investigate the effects of main flow length , its variable is nozle plate to distances( 12d, 10d, 8d, 6d and 4d).

  • PDF

Heat Transfer from Single and Arrays of Impinging Water Jets(II)-1 Row of Impinging Water Jets- (단일수분류 및 수분류군에 의한 열전달(2)-1열 수분류군-)

  • Eom, Gi-Chan;Lee, Jong-Su;Geum, Seong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1115-1125
    • /
    • 1997
  • Experiments have been conducted to obtain local and average heat transfer coefficients associated with impingement of a row of circular, free surface-water jets on a constant heat flux surface. Nozzle arrays are a row of 3 jets (nozzle dia.=4.6 mm) and a row of 5 jets (nozzle dia.=3.6 mm), and the nozzle configuration is Reverse cone type revealed good performance in heat transfer. Nozzle-to-plate spacings ranging from 16 mm to 80 mm were investigated for two jet center to center spacings 25 mm and 37.5 mm in the jet velocity of 3 m/s (R $e_{D}$=27000) to 8 m/s (R $e_{D}$=70000). For a row of 3 jets and a row of 5 jets, the stagnation heat transfer of the central jet is lower than that of adjacent jets. In the wall jet region between jets, for small nozzle-to-plate spacing and large jet velocity, the local maximum in the Nusselt number was observed, however, for small jet velocity or large nozzle-to-plate spacing, the local maximum was not observed. Except for the condition of $V_{O}$=8 m/s and H/D=10, the average Nusselt number reveals the following ranking: a row of 5 jets, a row of 3 jets, single jet. For a row of 3 jet, the maximum average Nusselt number occurs at H/D=8 ~ 10, and for a row of 5 jets, it occurs at H/D=2 ~ 4. Compared with the single jet, enhancement of average heat transfer for a row of 3 jets is approximately 1.52 ~ 2.28 times, and 1.69 ~ 3.75 times for a row of 5 jets.ets.s.

EFFICIENT SIMULATION AND SCALING OF OSCILLATORY IMPINGING JETS (진동하는 충돌 제트의 스케일링과 효율적인 수치 모사)

  • Kim S. I.;Park S. O.;Hong S. K.;Lee K. S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.32-38
    • /
    • 2005
  • Present study simulates oscillatory supersonic impinging jet flows using the axisymmetric Navier-Stokes code. To capture the salient features of flow oscillation and overcome the divergence during the initial transient period, several tests have been conducted for the grid and time step sizes. The results also show that the effects of the inlet flow condition at the nozzle exit and turbulence on the oscillatory behavior of supersonic impinging jets are negligible. Frequencies of the surface pressure oscillation obtained by the selected numerical method are in good accord with the measured impinging tones for various cases of nozzle-to-plate distance. Two seemingly different staging behaviors with nozzle-to-plate distance and nozzle pressure variations are found to correlate well if the frequency and distance are normalized by the length of the first shock cell.

Stress analysis near a circular hole in a flat plate reinforced by a cylinder (원통으로 보강된 평판의 응력해석)

  • 정인승;이대희;이완익;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.800-809
    • /
    • 1987
  • For precise stress analysis of pressure vessel nozzle junction area, it should be modelized as a cylindrical shell with a cylindrical outlet attached on it, but because of its geometrical complexity, exact analysis and solution is very difficult to obtain. So, when the nozzle diameter is small compared to that of vessel, it is general to simplify the model as a flat plate with a cylinder. As the current nozzle shape is manufactured as "Through Type" to reduce the stress concentration around the nozzle junction part of pressure vessel, a theoretical analysis on the cylinder with finite length should be performed to accomodate this fact. In this paper, the general solutions which were obtained by applying Fulgge's theory to the finite length cylinder, membrane and bending theory to the flat plate were superposed to analyze the model. Each theoretical optimal values were obtained through the analysis of stress concentration caused by the variation of cylinder length and thickness, and these results were estimated by performing model experimentation.mentation.

A Study on the Flow Characteristics of a Two - Dimensional Oblique Plate Impinging Jet (경사진 평판에서 2차원 충돌 제트의 유동 특성에 관한 연구)

  • 윤순현;김경문;김대성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.37-42
    • /
    • 1997
  • Turbulent flow characteristics of a two - dimensional oblique plate impinging jet(OPIJ) were experimentally investigated. The jet mean velocity and turbulent intensity profIles were also measured along the plate. The jet Reynolds numbers(Re, based on the nozzle width)ranged from 10, 000 to 35, 000, the nozzle - to - plate distance(H/B) from 2 to 16, and the oblique angle (a) from 60 to 90 degree. It has been found that the stagnation point shifted toward the minor flow region as the oblique angle decreases and the position of the stagnation point nearly coin¬cided with that of the maximum turbulent intensity.

  • PDF

A Numerical Study of Turbulent Flow and Heat Transfer due to Slot-jet impinging on a Moving flat plate (이동평판에 작용하는 슬롯 충돌제트의 유동 및 열전달에 관한 수치적 연구)

  • Lee, Jong-Seok;Kim, Dong-Keon;Kim, Moon-Kyung;Yoon, Soon-Hyun;Kim, Bong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2798-2803
    • /
    • 2008
  • The confined slot air jet impinging normally on a moving flat surface has been investigated numerically by using commercial CFD code Ansys CFX-V11. Turbulent flows are modeled using k-w turbulence model. Two-dimensional turbulent flow is considered. Calculations were conducted for a nozzle-to-plate spacing of eight slot nozzle width, at three Reynolds number(Re=4500, 6700 and 10,000) and four surface-to-velocity ratios i.e. 0, 0.25, 0.5 and 1. Results are compared against corresponding cases for heat transfer from a stationary plate. Local Nusselt number is calculated under constant wall temperature condition. The analysis reveals that the average Nusselt number increases considerably with the jet exit Reynolds number, but decrease with the plate velocity.

  • PDF

Heat Transfer Augmentation on Flat Plate with Two-Dimensional Rods in Impinging Air Jet System [3] : Effect of Rod Diameter (충돌판(衝突板) 근방(近傍)에 배열(配列)된 2차원(次元) rod가 충돌분류(衝突噴流) 열전달(熱傳達)에 미치는 영향(影響)[3] : rod직경변화(直徑燮化)에 대한효과(效果))

  • Kim, D.C.;Lee, Y.H.;Seo, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.295-302
    • /
    • 1990
  • The purpose of this study is augmentation of heat transfer without additional power in two-dimensional impinging air jet. The technique of heat transfer augmentation used in this experiment is to place rod bundles in front of the flat heated surface. The effects of rod diameter, nozzle-to-target plate distance and the nozzle exit velocity on heat transfer have been investigated. The main conclusions obtained from this experiment are as follows. High heat transfer augmentation is achieved by means of flow acceleration and thinning of boundary layer by placing rod bundles in front of the flat plate. Average heat transfer coefficient becomes maximum in the case of H/B=10,D=4mm. For H/B=2,D=4mm, maximum heat transfer augmentation has been determined to be about 1.5 times larger than that of the flat plate. Heat transfer augmentation by placing the rod bundles at 12m/s is to be about 2 times more than increasing nozzle exit velocity from 12m/s to 18m/s.

  • PDF

An Experimental Study on the Screech Tone in Supersonic Jet (초음속 제트의 스크리치 톤에 관한 실험적 연구)

  • Lim, Chae-Min;Kwon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2023-2028
    • /
    • 2004
  • The effects of nozzle-lip thickness on the relationship between screech tone and broadband shock-associated noise were experimentally investigated using a convergent-divergent nozzle with a design Mach number of 2.0. Overall sound pressure levels (OASPL) and noise spectra were obtained at far-field locations. Schlieren optical system was used to visualize the flow-fields of supersonic jets. A baffle plate was installed at the exit of the nozzle and its size was varied to obtain different nozzle-lip thicknesses. Experiment was carried out over a wide range of nozzle pressure ratios from 2.0 and 18.0, which corresponds to over- and under-expanded conditions. The results obtained clearly show that the screech tones are influenced by the nozzle-lip thickness. It is found that the screech tone and its peak amplitude are strongly dependent on whether the jet is over-expanded and under-expanded at the nozzle exit.

  • PDF

Development of Electrospray Micro Thruster with Super-Hydrophobic PTFE Surface Nozzle Treated by Ar and Oxygen Ion Beam

  • Lee, Y.J.;Byun, D.Y.;Si, Bui Quang Tran;Kim, S.H.;Park, B.H.;Yu, M.J.;Kim, M.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.877-880
    • /
    • 2008
  • In this article, in order to fabricate polymer based electrospray device with super hydrophobic nozzle we use PTFE(polyfluorotetraethylene) plate and PMMA(polymethylmethacrylate). To obtain the super hydrophobic surface nozzle, PTFE surface is treated by argon and oxygen plasma treatment process. And evaluate the treated surface, perform measuring contact angle, SEM(Scanning Electron Microscope) and AFM(Atomic Force Microscope). We compare the performance of the super hydrophobic PTFE surface nozzle with raw PTFE and PMMA surface nozzle. For the ion beam treated PTFE nozzle, the liquid doesn't overflow and it keeps initial position and meniscus shape. From these results, we expect in cease of superhydrophobic surface nozzle jetting becomes more stable and repeatable.

  • PDF

The Effect of Ambient Gas Density on the Development of Impinging Diesel Spray (분무실 밀도 변화가 충돌 디젤분무 특성에 미치는 영향)

  • Kim, J.H.;Lee, B.S.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.40-46
    • /
    • 1999
  • Experimental investigation of unsteady impinging diesel spray on the flat plate have been carried out using high speed camera and Malvern system. The density ratios of ambient gas to diesel fuel were varied using $N_2$ and Ar gas in the case of 14.9, 21.2, 28.4, 35.1, 40.4, and 50.1. With the increase of gas density ratio, the radial penetration is decreased due to the resistance of the ambient gas. With the increase of the gas density ratio and the distance between nozzle tip and flat plate, the height of spray is increased due to the entrance and circulation. With the increase of gas density ratio, SMD is decreased on the nearby position at the center of flat plate, but SMD is increased on the far position. As the distance between nozzle tip and flat plate is increased, SMD is always decreased.

  • PDF