• Title/Summary/Keyword: Plate load test

검색결과 586건 처리시간 0.025초

HEMU-400X 팬터그래프 시스템의 공력성능 개선을 위한 실험적 연구 (Experimental Studies on Improvement of Aerodynamic Performance of Pantograph System for HEMU-400X)

  • 이영빈;곽민호;김규홍;이동호;정형석;장영일;권혁빈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1-6
    • /
    • 2011
  • In this study, wind tunnel test were conducted to improve an aerodynamic performance of HEMU400X pantograph system with 4 types of pantograph housing models. Experimental models were 1/4 scaled pantograph system, 1/4 scaled ground plate which is scaled down to real roof shape of HEMU-400x, and 4 types of pantograph housing models. The free stream of wind tunnel were 20, 40, 60, 70m/s. The lift and drag forces were measured with 2-axis load cell. And, Total pressure were measured with rake in the wake region of panhead. In addition, Surface flow visualization by tufts were performed to know flow characteristics around pantograph housing. According to the results of force tests and surface visualizations, pantograph housing shape is important part because the shape affects to pantograph system. Therefore, it is considered that adaption of pantograph housing is more advantageous to decrease drag and acoustic noise.

  • PDF

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

AE법에 의한 유한 폭 CFRP 판재의 파괴특성 (Fracture Characteristics of Finite-Width CFRP Plates by Acoustic Emission)

  • 박성완;이장규
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.125-132
    • /
    • 2007
  • The purpose of present paper is to investigate a fracture characteristics of the finite-width single-edge-notch(SEN) carbon fiber/epoxy reinforced plastics(CFRP) plates by using an acoustic emission(AE). Uni-directionally oriented 10 plies CFRPs specimen which had different notch length were prepared for monotonic tensile test. Matrix cracking appeared over whole testing process and fiber breaking appeared later on mainly Load distribution factor of the matrix confirmed that increased according as increases of plate width ratio. The amplitude distribution of AE signal from a specimens is an aid to the determination of the different fracture mechanism such as matrix cracking, disbonding, interfacial delamination, fiber pull-out, fiber breaking, and etc. In the result of AE amplitude distribution analysis, matrix cracking, fiber disbonding or interfacial delamination, and fiber pull-out or fiber breaking signal correspond to <65dB, <75dB, and <90dB respectively, Also, changes of the slope of cumulative AE energy represented crazing phenomena or degradation of materials.

누적압연접합에 의한 6061 Al 합금의 결정립 미세화와 마멸 특성 연구 (An Investigation of Sliding Wear and Microstructural Evolution of Ultra-Eine Grained 6061 Al Alloy Fabricated by ARB)

  • 이태오;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.147-150
    • /
    • 2001
  • The ARB (Accumulative Rolling Bonding) Process was applied to a 6061 Al alloy to obtain ultra-fine grains. After 4 ARB cycles at $315^{\circ}C$, original equilibrium large grains were transformed to ultra-fine grains of several hundred nano-meter size with nonequilibrium grain boundaries. At lower number of cycles, microsutcture of highly-tangled dislocation cells were observed. Large grains and coarsened precipitates filled the microstructure of specimens experienced ARB cycles more than 5. Sliding wear tests using a pin-on-disk type wear tester were conducted on the ARB processed 6061 Al alloy plate. Wear rates of the 6061 Al alloy increased with the increase of ARB cycle number as well as the applied load. Worn surfaces and debris, cross-sections of the worn specimen were examined with scanning electron microscopy (SEM) to investigate the wear mechanism of the ultra-fine grained 6061 Al Tensile properties of the 6061 Al alloy were also studied and used to correlate the wear test results with the microstructures, which evolved continuously with the number of ARB cycles.

  • PDF

단일황복면 구성모델을 이용한 정규압밀 점토지반의 비배수 거동해석 (Undrained Behaviour of Normally Consolidated Clay Foundation Using Single-Hardening Constitutive Model)

  • 정진섭;이강일;박병기
    • 대한토목학회논문집
    • /
    • 제14권5호
    • /
    • pp.1229-1241
    • /
    • 1994
  • 본 연구는 탄 소성이론에 기초를 둔 Lade의 단일항복면 구성모델을 이용하여 정규압밀 점토지반의 비배수 거동을 연구한 것이다. 시료는 영산강 하류에서 채취한 무안 점토를 재생성시켜 동방압축팽창시험과 압밀비배수 삼축압축시험을 하여 이 구성모델에 필요한 11개의 토질매개변수를 결정하였다. 또한 비배수거동해석을 위한 유한요소 프로그램을 개발하였으며, 프로그램의 정도를 검증하기 위하여 매개변수결정에 사용된 시험결과를 역해석하였다. 그리고 2차원 모형지반에 재하시험을 실시하고 결과를 유한요소 프로그램으로 수치해석하여 서로 비교 검토하였다.

  • PDF

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • 제16권2호
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

인간형 로봇을 위한 6축 힘/모멘트센서 개발 (Development of 6-axis force/moment sensor for a humonoid robot)

  • 김갑순;신희준
    • 센서학회지
    • /
    • 제16권3호
    • /
    • pp.211-219
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for a humanoid robot. In order to walk on uneven terrain safely, the robot's foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself, and be controlled by the foot using the forces and moments. Also, in order to grasp unknown object safely, the robot's hand should perceive the weight of the object using the mounted 6-axis force/moment sensor to its wrist, and be controlled by the hand using the forces and moments. Therefore, 6-axis force/moment sensor should be necessary for a humanoid robot's hand and foot. In this paper, 6-axis force/moment sensor for a humanoid robot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing element of the sensor was designed using theoretical analysis. Then, 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from theoretical analysis agree well with the results from the experiments.

Strengthening of hollow brick infill walls with expanded steel plates

  • Cumhur, Alper;Altundal, Adil;Aykac, Sabahattin;Aykac, Bengi
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.887-904
    • /
    • 2016
  • An efficient, economical and practical strengthening method for hollow brick infill walls was proposed and investigated in the present study, experimentally and numerically. This method aims at increasing the overall lateral strength and stiffness of the structure by increasing the contribution of the infill walls and providing the non-bearing components of the structure with the capability of absorbing earthquake-induced energy to minimize structural damage during seismic excitations. A total of eleven full-scale infill walls strengthened with expanded mild steel plates were tested under diagonal monotonic loading to simulate the loading condition of the non-bearing walls during an earthquake. The contact surface between the plates and the wall was increased with the help of plaster. Thickness of the plates bonded to both faces of the wall and the spacing of the bolts were adopted as test parameters. The experiments indicated that the plates were able to carry a major portion of the tensile stresses induced by the diagonal loads and provided the walls walls with a considerable confining effect. The composite action attained by the plates and the wall until yielding of the bolts increased the load capacities, rigidities, ductilities and energy-absorption capacities of the walls, considerably.

두개의 평행한 축방향 관통균열이 존재하는 증기발생기 세관의 최적 파손예측모델 (Optimum Failure Prediction Model of Steam Generator Tube with Two Parallel Axial Through-Wall Cracks)

  • 이진호;송명호;최영환;김낙철;문성인;김영진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1186-1191
    • /
    • 2003
  • The 40% of wall criterion, which is generally used for the plugging of steam generator tubes, may be applied only to a single crack. In the previous study, a total of 9 failure models were introduced to estimate the local failure of the ligament between cracks and the optimum coalescence model of multiple collinear cracks was determined among these models. It is, however, known that parallel axial cracks are more frequently detected during an in-service inspection than collinear axial cracks. The objective of this study is to determine the plastic collapse model which can be applied to the steam generator tube containing two parallel axial through-wall cracks. Nine previously proposed local failure models were selected as the candidates. Subsequently interaction effects between two adjacent cracks were evaluated to screen them. Plastic collapse tests for the plate with two parallel through-wall cracks and finite element analyses were performed for the determination of the optimum plastic collapse model. By comparing the test results with the prediction results obtained from the candidate models, a plastic zone contact model was selected as an optimum model.

  • PDF

ATOS 80 고장력강의 보호가스량에 따른 용접부 방사선검사에 관한 연구 (A Study on Indications in Radiographic Tests in Welding Specimens According to Shielded Amounts of ATOS 80 High-strength Steel)

  • 백정환;최병기
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.910-914
    • /
    • 2012
  • In constructing all kinds of equipment and steel structures, discontinuous areas such as weld defects formed in a welded structure tend to generate cracks that will result in damage. In this study, ATOS high-strength steel welding becomes important in butt welding where the tensile strength of the steel is over 80kg/$mm^2$. Structural discontinuities such as joints are more susceptible cracks in part due to their repeated loading and fatigue crack growth. The quality of parts produced depend or the shielded amounts of steel and on the skill of the welders in making strong welds. It is true that there are many factors that can be used to generate a lot of research in this area. However geometry and load conditions due to the combined effects with many issues could be solved through this study. Butt welding material at a plate thickness of 12t in ATOS 80 high-strength steel with a 4 pass, 20l/min, 24V/200A welder is good at making specimens with the quality shown in radiographic testing.