• 제목/요약/키워드: Plate height

검색결과 646건 처리시간 0.024초

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

A study on growth and development of children by ultrasonic image of calcaneus bone (종골의 초음파영상을 통한 소아성장에 관한 연구)

  • Chang, Gyu-Tae;Kim, Jang-Hyun;Seo, Young-Min
    • The Journal of Pediatrics of Korean Medicine
    • /
    • 제17권2호
    • /
    • pp.1-13
    • /
    • 2003
  • Objectives: The purpose of this study was to suggest a scientific method for measurement of children's growth development. Ultrasonic image of calcaneus bone has some advantages that it is harmless to human body and apply a new imaging analysis algorithm. it can be used for the diagnosis of growth analyzed the opening degree of growth plate and bone density. Methods: This clinical study have been carried out with the 57 case(male 24, female 33) of the children aged 5 to 14 years old who visited in Department of Pediatrics, Dongguk university Bundang Oriental Hospital. Bone maturity is measured by the opening degree of growth plate and bone density in ultrasonic image of calcaneus bone This study were designed to investigate the relationship of the development of children and the calcaneus bone maturity. Result: The opening degree of growth plate was no change in aged 5-10 years for male and 5-9 years for female but decreased significantly from aged 11 years for male and 10 years for female. the bone density was no change in aged 5-12 years for male and 5-11 years for female but increased significantly from aged 13 years for male and 12 years for female. it was confirmed that bone maturity in female is more rapid than in male. The opening degree of growth plate of claclneus bone was correlated with age, height, weight. The bone density was correlated with age, height, weight, BMI in this suudy(P<0.001) Conclusion: The opening degree of growth plate and bone density of calcaneus bone are sufficient diagnostic worth as an index to predict adolescent growth.

  • PDF

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

Deformation Characteristics of Steel Plate Cellular Bulkhead (강판셀 호안의 변형특성)

  • Jeong Wook Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • 제9권4호
    • /
    • pp.165-175
    • /
    • 1997
  • This study qualitatively reviewed effect of the height of loading and the ratio of penetration on. the characteristics of deformation of cellular bulkhead by performing a model test of embedded steel plate cellular bulkhead which had different loading height and penetration ratio. And we also examined the effect of the loading height upon the shear behavior by performing two-dimensional model test making use of aluminum rods for a filler. Besides, test results and theoretical values based on Hansen's earth pressure theory were compared and reviewed. In consequence, it was ascertained that the yield moment of cells depended on the height of loading and the ratio of penetration, and the slip surface was located on the lower area of a cell interior according as the height of loading becomes lower. The theoretical consideration which was based on the theory of earth pressure proposed by Hansen revealed that the test results accorded with the theoretical values to some degree, and the same results were derived about the location change of the slip surface.

  • PDF

The analysis of lower extremities injury on depth jump (Depth Jump 시 하지 관절 상해에 관한 운동역학적 분석)

  • So, Jae-Moo;Kim, Yoon-Ji;Lee, Jong-Hee;Seo, Jin-Hee;Chung, Yeon-Ok;Kim, Koang-Ki
    • Korean Journal of Applied Biomechanics
    • /
    • 제15권1호
    • /
    • pp.127-142
    • /
    • 2005
  • The purpose of this study was to analysis biomechanics of the lower extremities injury the heights(40cm, 60cm, 80cm) of jump box as performed depth jump motion by 6 females aerobic athletes and 6 non-experience females students. The event of depth jump were set to be drop, landing and jump. The depth jump motions on the force plate were filmed using a digital video cameras, and data were collected through the cinematography and force plate. On the basis of the results analyzed, the conclusions were drawn as follows: 1. The landing time of skill group was shorter than unskill group at 40cm, 60cm drop height during drop-landing-jump phase especially. The landing time of 60cm drop height was significant between two group(p<.05). 2. The peak GRF of sagittal and frontaI direction following drop height improve was variety pattern and the peak vertical force of 40cm drop height was significantly(p<.05). 3. The magnitude of peak passive force was not increase to change the drop height. 4. The peak passive forces was significant at 40cm drop height between two groups(p<.05)

Unsteady 2-D flow field characteristics for perforated plates with a splitter

  • Yaragal, Subhash C.
    • Wind and Structures
    • /
    • 제7권5호
    • /
    • pp.317-332
    • /
    • 2004
  • Wind tunnel experiments were conducted under highly turbulent and disturbed flow conditions over a solid/perforated plate with a long splitter plate in its plane of symmetry. The effect of varied level of perforation of the normal plate on fluctuating velocities and fluctuating pressures measured across and along the separation bubble was studied. The different perforation levels of the normal plate; that is 0%, 10%, 20%, 30%, 40% and 50% are studied. The Reynolds number based on step height was varied from $4{\times}10^3$ to $1.2{\times}10^4$. The shape and size of the bubble vary with different perforation level of the normal plate that is to say the bubble is reduced both in height and length up to 30% perforation level. For higher perforation of the normal plate, bubble is completely swept out. The peak turbulence value occurs around 0.7 to 0.8 times the reattachment length. The turbulence intensity values are highest for the case of solid normal plate (bleed air is absent) and are lowest for the case of 50% perforation of the normal plate (bleed air is maximum in the present study). From the analysis of data it is observed that $\sqrt{\overline{u^{{\prime}2}}}/(\sqrt{\overline{u^{{\prime}2}}})_{max}$, (the ratio of RMS velocity fluctuation to maximum RMS velocity fluctuation), is uniquely related with dimensionless distance y/Y', (the ratio of distance normal to splitter plate to the distance where RMS velocity fluctuation is half its maximum value) for all the perforated normal plates. It is interesting to note that for 50% perforation of the normal plate, the RMS pressure fluctuation in the flow field gets reduced to around 60% as compared to that for solid normal plate. Analysis of the results show that the ratio [$C^{\prime}_p$ max/$-C_{pb}(1-{\eta})$], where $C^{\prime}_p$ max is the maximum coefficient of fluctuating pressure, $C_{pb}$ is the coefficient of base pressure and ${\eta}$ is the perforation level (ratio of open to total area), for surface RMS pressure fluctuation levels seems to be constant and has value of about 0.22. Similar analysis show that the ratio $[C^{\prime}_p$ max/$-C_{pb}(1-{\eta})]$ for flow field RMS pressure fluctuation levels seems to be constant and has a value of about 0.32.

Stress Analysis of Blanking Plate Applied by Press (프레스에 의한 블랭킹 판재의 응력 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제7권2호
    • /
    • pp.66-71
    • /
    • 2008
  • The data of the deformation and the stress according to time are studied at upper model of press and lower model of the blanking plate applied by press with the width, length and height of 0.4 m and 0.6 m respectively. The press is pushing downward on the plate fixed at the lower floor. These data are compared and investigated through this study. By using these results, there is the maximum deformation at 4 corners in the lower plate model of aluminium alloy fixed at lower floor. This deformation incase of elapsed time of 0.6 second becomes 4 times as much as in case of elapsed time of 0.2 second. The quantity of deformation at the lower plate model becomes more than at the upper press model to the extent of 10%. At the lower plate model of aluminium alloy, there is the maximum Von-Mises equivalent stress at 4 corners and both sides of middle area on the lower plate model of aluminium alloy. This stress in case of elapsed time of 0.6 second becomes 6 times as much as in case of elapsed time of 0.2 second. The Von-Mises equivalent stress of lower plate model becomes 2 times as much as that of upper press mode.

  • PDF

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

Modal Analysis of Sandwich Plate Structure Considering Buckling (좌굴을 고려한 샌드위치형 판 구조물의 모드해석)

  • Han, Geun-Jo;Ahn, Chan-Woo;Ahn, Seong-Chan;Hong, Do-Kwan;Han, Dong-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제19권6호
    • /
    • pp.104-108
    • /
    • 2002
  • Sandwich plate structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. In this paper, the mechanical behavior of sandwich plate structure with honeycomb core considering buckling is investigated in detail. The focus of the analysis is to evaluate strength and stiffness of the plate structure with critical stress, natural frequency, and mode shapes. The results of this investigation are obtained from detailed finite element analysis for various parameters, such as length, height ratio, and thickness ratio of honeycomb core.

An Experimental Study on the Shear Buckling of a Composite Plate with Bead and Hole (비드와 원공을 갖는 복합재 평판의 전단 좌굴 실험에 관한 연구)

  • 임효식;김주언;황정선
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • 제3권1호
    • /
    • pp.146-154
    • /
    • 2000
  • Buckling behavior was studied for the square plate with bead and hole under shear load. Plates were made to examine the effect of bead and hole to the material, aluminum and composite, the effect of flange angle, bead height and bead radius of curvature. There was little difference between buckling loads obtained by the experiment and Rayleigh-Ritz method to the plate. Buckling load could be increased highly when stress concentration to the hole was dispersed effectively using flange. A well-designed plate using bead and flange showed 3 times as much as stiffness to the plate without bead and flange.

  • PDF