• Title/Summary/Keyword: Plate girder

Search Result 426, Processing Time 0.023 seconds

A Study on the Vibration Analysis of a Deckhouse of Fishing Vessel (어선의 갑판실의 진동 해석법에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.3
    • /
    • pp.193-210
    • /
    • 1991
  • For the deckhouse or superstructure, attention is directed to the reduction of vibration from a human susceptibility point of view. The two basic requirements for obtaining a low vibration level in the accommodation are to ensure that excitation forces from propeller and/or main engine are small and to avoid resonance excitation of the hull and superstructure. In recent years increased attention has been directed towards the problems of vibration and noise in deckhouse, which have caused major problems with regard to the environmental quality in the living quarters for crews. Accordingly, in this paper, the characteristic of the vibration of deckhouse of fishing boat, of which the length/height ratio is also relatively high, are studied systematically with regard to the shape and modelling of deckhouse based on finite element method of 1-dimensional, 2-dimensional and 3-dimensional model. This study is divided into 4-part. 1st part is the global deckhouse vibration, 2nd part is the local deckhouse vibration, 3rd part consists of the estimation for stiffness of foundational support and 4th part is the application to TUNA LONG LINER of 416 ton class. For the global vibration analysis, the severity of the vibration depends on the longitudinal shear and bending stiffness of the deckhouse, on the vertical deckhouse support(fore, aft and sides). However, even if the design is technically sound, vibration problems may arise due to vertical or longitudinal hull girder or afterbody resonances. Author applied the method of this study to the analysis of, deep-sea fishing vessel of G.T. 416 ton class with relatively low height and long deckhouse, and investigated the vibrational characteristic of the fishing vessel with earlier structural feature. According to this investigation, the vibration, response of above vessel was confirmed of which main hull and deckhouse behave as one body. It is at the bottom of vibrational trouble which a accommodation part of the fishing vessel is raised, that is the local vibration for side wall, fore-aft wall and deck plate of deckhouse rather than thief fect of fore-aft vibration of deckhouse for above fishing vessel. and the resonance of main hull, deckhouse and driving system such as the main engine, propeller in exciting source is mainly brought up as the trouble.

  • PDF

Seismic Evaluation of Supporting Reactions for the Bridge with Various Curvatures and Skew Angles (지진하중 하에서 교량 곡률과 사각 크기에 따른 받침부의 반력 검토)

  • Park, Seong-Ryel;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • This study has addressed to evaluate the effects of radius of curvature and skew angle on the negative reaction in a plate girder bridge with LRB (Lead Rubber Bearing) supports. As analytical parameters, various radius of curvatures and skew angles were selected and two seismic loads of El-Centro and artificial earthquakes were applied to the bridge in the longitudinal and transverse directions. As results of 3D analysis, the possibility of negative reaction is shown at the part of acute angle and inner side of the curved bridge, and becomes increased when seismic load is applied in the transverse direction. In addition, the occurrence of negative reaction is found to be increased as both radius of curvature and skew angle decrease, which means that curved bridge has higher possibility of negative reaction than straight one. Conclusively, all of earthquake wave, gradient, radius of curvature and skew angle should be considered together to investigate the possibility of negative reaction at the bridge support subject to seismic load.

A Experimental Comparison Study on Structural Behavior of Prefabricated Bridge (조립식 바닥판 교량의 거동에 대한 실험적 비교 연구)

  • Han, Man-Yup;Kim, Seong-Dong;Jin, Kyung-Seok;Kang, Sang-Hun;Cho, Byung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.25-28
    • /
    • 2008
  • Currently, the prefabricated bridge having the effects to reduce the term of works and the cost of construction is often studied and countries such as America have already developed members, the parts of it, and the technique of construction. In addition, they have supplied them to the fields. The study of prefabricated method of steel composite bridge, which has the precast deck - plate and main girder fixed by high tension bolt and can resist horizontal sheer, is being progressed. However, it is difficult to understand the characteristics of the prefabricated bridge's behavior when the superstructure of the prefabricated method is analyzed by applying to the analysis model of existing bridges. Therefore, this study has the purpose of understanding real structural behavior of prefabricated bridge through comparison and analysis between the structural analysis model reflecting the characteristics of the real prefabricated bridge's superstructure and real size experiment.

  • PDF

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Development of Moving Force Identification Algorithm Using Moment Influence Lines at Multiple-Axes and Density Estimation Function (다축모멘트 영향선과 밀도추정함수를 사용한 이동하중식별 알고리듬의 개발)

  • Jeong, Ji-Weon;Shin, Soobong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.87-94
    • /
    • 2006
  • Estimating moving vehicle loads is important in modeling design loads for bridge design and construction. The paper proposes a moving force identification algorithm using moment influence lines measured at multi-axes. Density estimation function was applied to estimate more than two wheel loads when estimated load values fluctuated severely. The algorithm has been examined through simulation studies on a simple-span plate-girder bridge. Influences of measurement noise and error in velocity on the identification results were investigated in the simulation study. Also, laboratory experiments were carried out to examine the algorithm. The load identification capability was dependent on the type and speed of moving loads, but the developed algorithm could identify loads within 10% error in maximum.

Prediction of Crack Growth Lives of an Aged Korean Coast Guard Patrol Ship based on Extended Finite Element Method(XFEM) J-Integral (확장 유한 요소법(XFEM) J-적분을 이용한 노후 순시선의 균열 성장 수명 예측)

  • Kim, Chang-Sik;Li, Chun Bao;Kim, Young Hun;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.335-343
    • /
    • 2017
  • The Newman-Raju formula and contour integral-based finite element analyses(FEAs) have been widely used to assess crack growth rates and residual lives at crack locations in ships or offshore structures, but the Newman-Raju formula is known to be less accurate for the complicated weld details and the conventional FEA-based contour integral approach needs concentrated efforts to construct FEA models. Recently, an extended finite element method(XFEM) has been proposed to reduce those modeling efforts with reliable accuracy. Stress intensity factors(SIFs) from the approaches such as the Newman-Raju formula, conventional FEA-based J-integral, and XFEM-based J-integral were compared for an infinitely long plate with a propagating elliptic crack. It was concluded that the XFEM approach was far reliable in terms of prediction ability of SIFs. Assuming a 25 year-aged coast guard patrol ship had the prescribed cracks at the bracket toes attached to longitudinal stiffeners in way of deck and bottom, SIFs were derived based on the three approaches. To obtain axial tension loads acting on the longitudinal stiffeners, long term hull girder bending moments were assumed to obey Weibull distribution of which two parameters were decided from a reference (DNV, 2014). For the complicated weld details, it was concluded that the XFEM approach could cost-effectively and accurately estimate the crack growth rates and residual lives of ship structures.

A Basic Study on the Varying Thickness Detection of Steel Plate Using Ultrasonic Velocity Method (초음파 속도법을 활용한 강판의 두께 변화 탐지를 위한 기초연구)

  • Kim, WooSeok;Mun, Seongmo;Kim, Chulmin;Im, Seokbeen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.146-152
    • /
    • 2020
  • This study was initiated to develop an effective inspection method to detect defects such as corrosion in closed-cell steel members in steel-box girder bridges. The ultrasonic velocity method among various non-destructive method was selected as a rapid and effective method to derive the average propagation velocity in the medium by using the ultrasonic wave velocity method for specimens of different thickness. The regression analysis was performed based on the experimental results, and the results was interpolated to evaluate the prediction accuracy. If the material properties are identical, this ultrasonic velocity method can predict the thickness using the averaged transmitted velocity. In addition, a continuous scanning method moving at 200 mm/s was tested for scanning a wide area of a bridge. The results exhibited that the continuous scanning method was able to effectively scan the different thickness of a bridge.

Applications of Displacement Response Estimation Algorithm Using Mode Decomposition Technique to Existing Bridges (모드분해기법을 이용한 변위응답추정 알고리즘의 실교량 적용)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.257-264
    • /
    • 2010
  • Generally, estimations on the displacement as an important factor in evaluating the safety of large structures could be a barometer assessing whether the condition of the structure is deteriorating. Practically, it is not easy how to measure the displacement response to large structures like suspension bridges. In this study, as a method for estimation displacement response from strain signals, mode decomposition technique is proposed. Total displacement response is estimated by superposing quasistatic displacement response and modal displacement responses in dominant modes with larger contributions after estimating the modal displacement responses. If foiled strain gauges are used to measure strain signals, there would likely to generate electric noise, what's more, the more measuring points there are the more economic burden it could be. In order to solve such problems, fiber optic bragg-grating(FBG) sensors were used, which have multi-point measurements with no effect on electric noises. Therefore, the experiment was performed through dynamic load test of suspension bridge and plate-girder bridge to review the possibility for using mode decomposition technique.

Seismic control of high-speed railway bridge using S-shaped steel damping friction bearing

  • Guo, Wei;Wang, Yang;Zhai, Zhipeng;Du, Qiaodan
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.479-500
    • /
    • 2022
  • In this study, a new type of isolation bearing is proposed by combining S-shaped steel plate dampers (SSDs) with a spherical steel bearing, and the seismic control effect of a five-span standard high-speed railway bridge is investigated. The advantages of the proposed S-shaped steel damping friction bearing (SSDFB) are that it cannot only lengthen the structural periods, dissipate the seismic energy, but also prevent bridge unseating due to the restraint effectiveness of SSDs in the large relative displacements between the girders and piers. This study first presents a detailed description and working principle of the SSDFB. Then, mechanical modeling of the SSDFB was derived to fundamentally define its cyclic behavior and obtain key mechanical parameters. The numerical model of the SSDFB's critical component SSD was verified by comparing it with the experimental results. After that, parameter studies of the dimensions and number of SSDs, the friction coefficient, and the gap length of the SSDFBs were conducted. Finally, the longitudinal seismic responses of the bridge with SSDFBs were compared with the bridge with spherical bearing and spherical bearing with strengthened shear keys. The results showed that the SSDFB can not only significantly mitigate the shear force responses and residual displacement in bridge substructures but also can effectively reduce girder displacement and prevent bridge unseating, at a cost of inelastic deformation of the SSDs, which is easy to replace. In conclusion, the SSDFB is expected to be a cost-effective option with both multi-stage energy dissipation and restraint capacity, making it particularly suitable for seismic isolation application to high-speed railway bridges.

Ultimate Strength tests Considering Stranding Damage (좌초손상을 고려한 최종강도 실험)

  • Lee, T.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.2
    • /
    • pp.86-91
    • /
    • 2008
  • Ships operating in littoral sea are likely to be subjected to accidental load such as stranding. Once she has damage on the hull structure, her ultimate strength will be reduced. This paper is to investigate the effect of the stranding damage on ultimate strength of ship structure by using a series of collapse tests. For the experiment, 720 mm $\times$720 mm in section and 900mm in length of five box-girder models with stiffeners were pre- pared. Of the five, one has no damage and faur have an diamond shaped damage which represents the shape of rock section in seabed. The damage size is different between models. Among the damaged models, the damages of 3 of them were made by cutting the plate and one by pressing to represent stranding damage. Experiments were carried out under pure bending load and the applied load and displacements were recorded. The ultimate strength is reduced as the damage size increases, as expected. The largest damaged model has the damage size of 30% of breadth and its ultimate strength is reduced by 21% than that of no damaged one. The pressed one has lower ultimate strength than cut one. This might be due to the fact that the plate around the pressed damage area effect negatively on the ultimate strength.

  • PDF