• Title/Summary/Keyword: Plate girder

Search Result 426, Processing Time 0.025 seconds

A curved shell finite element for the geometrically non-linear analysis of box-girder beams curved in plan

  • Calik-Karakose, Ulku H.;Orakdogen, Engin;Saygun, Ahmet I.;Askes, Harm
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.221-238
    • /
    • 2014
  • A four-noded curved shell finite element for the geometrically non-linear analysis of beams curved in plan is introduced. The structure is conceived as a sequence of macro-elements (ME) having the form of transversal segments of identical topology where each slice is formed using a number of the curved shell elements which have 7 degrees of freedom (DOF) per node. A curved box-girder beam example is modelled using various meshes and linear analysis results are compared to the solutions of a well-known computer program SAP2000. Linear and non-linear analyses of the beam under increasing uniformly distributed loads are also carried out. In addition to box-girder beams, the proposed element can also be used in modelling open-section beams with curved or straight axes and circular plates under radial compression. Buckling loads of a circular plate example are obtained for coarse and successively refined meshes and results are compared with each other. The advantage of this element is that curved systems can be realistically modelled and satisfactory results can be obtained even by using coarse meshes.

Experimental Study on the Composite Bridge Deck of Hollow Section (중공단면 복합소재 교량 바닥판의 시험을 통한 구조적 특성 분석)

  • Lee, Sung-Woo;Kim, Byung-Suk;Hong, Kee-Jeung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.325-335
    • /
    • 2006
  • In this paper, flexural test, girder-connection test and barrier-connection test for the pultruded composite bridge deck of hollow section, were carried out and its structural characteristics were evaluated. In the flexural test specimen, deflection was measured at center of the span and strains were measured at various locations to see the structural behavior up to the failure. In addition, finite element analysis was performed for the flexural test specimen and the results were compared with experiments, and load carrying capacity was evaluated. Also, field load test was conducted for the demonstration plate girder bridge and other field applications were described.

Evaluation of Diaphragm Effect for Hybrid Structural Systems Using Finite Element Method (유한요소법을 이용한 주상복합건물의 강막작용에 의한 영향 평가)

  • 김희철;최성우;홍원기
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.19-32
    • /
    • 2003
  • The structural system of a hybrid building is composed of upper shear wall which resist lateral force by bending deformation and lower frame which resist lateral force by shear deformation. A deep transfer girder is used to transfer gravity load safely from super structures to structural frame beneath. Because of the vertical discontinuity, a building with transfer girder must be analyzed by dynamic analysis. However, this structural system has many problems in performing dynamic analysis that cannot be solved by general analysis procedure. The slabs In transfer floor are considered as either a Plate element or a rigid diaphragm in finite element analysis without appropriate evaluation of their characteristics. Therefore, a reasonable analysis method is proposed in this study by evaluating the diaphragm effect of a hybrid structure system.

The Distribution of the Normal Traffic Loads on the Steel Plate Girder Bridge (실동하중에 의한 강판형교의 교통하중 분포)

  • Woo, Sang-Ik;Jung, Kyoung-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • The objectives of the study are to know the strain distribution and modal dynamic behaviour of steel bridge girders by actual traffic load. The live load effect depends on many parameters including the span length, gross vehicle weight, axle weight, axle configuration so on. For the estimation of static and dynamic characteristic, strain data caused by moving loads and traffic characteristics of passing vehicle under actual traffic load have measured using Bridge Weigh in Motion. To confirm the reliability of BWIM system, strain data measured using the $120{\Omega}$ strain gauge under the same condition. It is considered that the data acquired from BWIM system have reliability through the analysis and comparison between stress measured by strain data from BWIM and computed by FEM. Additionally according to the measured strain data of up-line and down-line on the highway, the up-line bridge grows more faster than the down-line bridge and girder 4 and 5 carry more load when vehicles pass the inner line and girder 2 and 3 does when vehicles pass the outer line as this case(the bridge composed with 5 girders).

  • PDF

A Study on the Buckling & Ultimate Strength for Ship's Plate with Cutout (선체유공판의 좌굴 및 최종강도에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.167-172
    • /
    • 2003
  • Place that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension. and thickness in this investigation. Used program applied ANSYS F.E.M code transformation finite element law that is mediocrity finite element analysis code.

  • PDF

Structural Intensity Analysis of Local Ship Structures (선체 구조요소의 진동인텐시티 해석)

  • Cho, Dae-Seung;Kim, Sa-Soo;Lee, Dong-Hwan;Choi, Tae-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.881-887
    • /
    • 2000
  • The interest in evaluation of structural intensity arises for practical reasons, because net energy flow distribution offers information of energy transmission path, positions of sources, and sinks of vibration energy. In this paper, structural intensity analysis of local ship structures using finite element method(FEM) is carried out. The purpose of this analysis is to evaluate the relative accuracy according to mesh fineness. The structural intensity of a stiffened plate varying their mesh fineness is analyzed and the results are compared with those obtained by the assumed made method. As results, the proper mesh size in qualitative/quantitative structural intensity analysis of plate structures is proposed. In addition, the propagation phenomenon of vibration energy is investigated for the L-type plate and box-girder structures.

  • PDF

Ultimate load behaviour of tapered steel plate girders

  • Shanmugam, N.E.;Min, Hu
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.469-486
    • /
    • 2007
  • The paper is concerned with the behavior of tapered steel plate girders, primarily subjected to shear loading; experimental as well as finite element results obtained from the studies are presented in this paper. In the experimental study, 11 large-scale girders, one of uniform section and 10 tapered, were tested to failure and all girders were analysed by finite element method. The results are compared and the accuracy of the finite element modeling established. A parametric study was carried out with thickness of web, loading direction and taper angle as parameters. An analytical model, based on Cardiff model for girders of uniform cross-section, is also proposed in the paper.

Damage Assessment of Plate Gider Railway Bridge Based on the Probabilistic Neural Network (확률신경망을 이용한 철도 판형교의 손상평가)

  • 조효남;이성칠;강경구;오달수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.229-236
    • /
    • 2003
  • Artificial neural network has been used for damage assessment by many researchers, but there are still some barriers that must be overcome to improve its accuracy and efficiency. The major problems associated with the conventional artificial neural network, especially the Back Propagation Neural Network(BPNN), are on the need of many training patterns and on the ambiguous relationship between neural network architecture and the convergence of solution. Therefore, the number of hidden layers and nodes in one hidden layer would be determined by trial and error. Also, it takes a lot of time to prepare many training patterns and to determine the optimum architecture of neural network. To overcome these drawbacks, the PNN can be used as a pattern classifier. In this paper, the PNN is used numerically to detect damage in a plate girder railway bridge. Also, the comparison between mode shapes and natural frequencies of the structure is investigated to select the appropriate training pattern for the damage detection in the railway bridge.

Dynamic Response and Reinforcement of the Railway Plate Girder Bridges (무도상 철도판형교의 동적응답특성 및 보강방안)

  • Hwang, Won Sup;Cho, Eun Sang;Oh, Ji Taek;Kim, Hyun Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.281-290
    • /
    • 2007
  • In this paper, the dynamic behavior of a 12m plate girder railway bridge is analyzed using the commercial FEM program. A time history load is applied to a standard train load via the shape function ofthe beam element. In addition, lateral behavior characteristics were simulated using the Klingel sine movement. A feasibility study of the FEM program and an analysis were performed by comparing the displacement and the acceleration, from the experimental data and the results of the FEM analysis. the time history of the lateral and vertical displacements are reflected in the experimental results. Six kinds of reinforcements were studied from the effects of the displacement and the acceleration. The RF-1 model that was applied to the upper lateral bracing system, and the RF-3 model that reinforced the plate, turned out to be the most effective reinforcement methods with respect to weight limits and construction simplification.

A Numerical Study for Deformation Characteristics of the Wearing Surface on a Steel Plate Deck under Wheel Loads (윤하중을 받는 강바닥판 교면포장의 변형특성에 대한 수치해석적 연구)

  • Kim, Hae-Na-Rae;Ock, Chang-Kwon;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.439-447
    • /
    • 2011
  • Longitudinal cracks due to traffic truck loadings that are caused by local deformations of steel orthotropic bridge decks are sometimes observed in the wearing surface. So, underlying causes of the longitudinal pavement crack induced by structural behaviors of steel decks are investigated in this study. For this purpose, The rational finite element model of the steel deck and the pavement having the box girder is developed and a parametric study is performed by varying thickness or elastic modulus ratios of both the steel deck plate and the pavement. As a result, a large tensile strain above the webs of the u-rib and the box girder, which becomes the main cause of the cracks of the pavement, is detected from variation of the normal strain component of the wearing surface in the transverse direction.